Dr Jarosław Gawdzik, Eng.

Kielce University of Technology

Faculty of Environmental Engineering, Geomatics and Power Engineering

Department of Environmental Engineering and Protection

Appendix 2

PRESENTATION OF SCIENTIFIC ACHIEVEMENTS

1. First name and surname: Jarosław Gawdzik

2. Diplomas and degrees obtained:

a) 21 Sept. **1990** – *MSc. Eng.* – Cracow University of Technology

Title of the MA thesis: Numerical method of catalyst deactivation computation (in Polish) *Supervisor: Associated Prof. Wanda Kramarz, PhD, Eng.*

b) 24 Oct. **2001** – *Doctor of technical sciences*, Faculty of Civil Engineering, Kielce University of Technology.

Title of the doctoral dissertation: Investigations into oil derivative migration in the porous medium in relation to groundwater hazard

Supervisor: Dr habil. Maria Żygadło, the University Prof., Eng.

3. History of employment in research institutions:

a/ 1 Nov. 1990 to 30 Sept. **1991** – Assistant at the Unit of Technical Chemistry, Kielce University of Technology.

b/ 14 Feb. 1993 to 31 Dec. **2001** - Assistant at the Department of Water and Sewage Technologies, Kielce University of Technology.

c/ since 1 Jan. **2002** – Assistant Professor at the Department of Environmental Engineering and Protection, Kielce University of Technology.

4. Research work

a/ the modelling of contaminant migration processes:

After obtaining doctor's degree, I continued research into the migration of oil derivatives in a porous medium. In environmental engineering, it is important to find out how the transport processes of petroleum products occur. This knowledge is applied to technologies of waste disposal at landfills (the migration of leachate containing oil derivatives into the ground), issues related to derivative migration from typical areas of contamination (filling stations, petroleum product storage facilities, military testing grounds), and to situations in which those substances enter the ground as a result of road or railway accidents. The migration of oil-derived contaminants may occur in different states of matter, namely it can proceed in gaseous, liquid and solid form, or it can take place in the form of phase combination. In the zone of aeration (unsaturated), some oil derivatives undergo adsorption on the rock material, others infiltrate inside often reaching the groundwater table. The investigations aimed at developing a diffusive model of hydrocarbon propagation (initial-boundary value problem) in the sandhydrocarbons system, and at the model experimental validation:

$$\frac{\partial C_i}{\partial t} = D_i \frac{\partial^2 C_i}{\partial z^2} - \mu_i C_i \tag{1}$$

•
$$C_i(z, 0) = 0$$
 for $0 < z \le S$

• $C_i(0, t) = C_{0i} exp(-\mu_i \cdot t)$ for $t \ge 0$

•
$$\frac{\partial C_i}{\partial z} = 0$$
 for $t > 0$ and $z = S$

where:

- μ_i constant velocity of decrease in hydrocarbon concentrations, [s⁻¹]
- C_i content of the "ith" hydrocarbon in the matrix, [kg·m⁻³]
- C_{0i} initial content of the "ith" hydrocarbon in the matrix, [kg·m⁻³]
- D_i substitute coefficient of diffusion of component "ith" [m²·s⁻¹]
- S maximum ground penetration by hydrocarbons, [m]
- t time, [s]
- z independent variable of hydrocarbon migration in the vertical direction, [m]

The boundary value problem (1) was used to describe the transport of oil-derived hydrocarbons in the aeration zone. The model was validated at the research stand under the conditions simulating the natural ground medium.

I am a co-author of three studies, published by periodicals in JCR database, which originated in the research that resulted from continuing the topic of my doctoral thesis:

- Żygadło M., Gawdzik J.: Modelling the transport of petroleum products by soil filter method, Polish Journal of Environmental Studies, vol. 19, No, 4, pp. 841-847, 2010.
- Żygadło M., Gawdzik J.: Modelling transport of hydrocarbons in soil-water environment, Ecological Chemistry and Engineering S, vol. 17 No. 3, pp. 331-343, 2010.
- Gawdzik B., Gawdzik J.: Impact of pollution with oil derivatives on the natural environment and methods of their removal, Ecological Chemistry and Engineering S, vol. 18 No. 3, pp. 345-357, 2011.

b/ heavy metal mobility in sewage sludge as indicated by speciation analysis:

Determining heavy metal migration in sewage sludge seems of primary importance when the sludge is used in agriculture. Sewage sludge from sewage treatment plants has both soilforming and fertilising properties. It contains organic substances, nitrogen, phosphorus, magnesium, calcium and potassium forms that are available to plants. The constraints on sewage

4

sludge use as an organic fertiliser result mainly from inappropriate microbiological composition and high heavy metal content. Problem of sewage sludge is related to the scale of its production. In 2012, 3191 municipal sewage treatment plants generated approx. 520 Gg dry mass. Heavy metals in sludge originate in sewage subjected to treatment processes. In sewage, heavy metals are found as suspensions or in dissolved forms. Sewage treatment processes, including the simultaneous phosphorus precipitation, and also chemical precipitation with lime, result in heavy metal adsorption and co-precipitation in the deposited sludge. That leads to their removal from the sewage. Additionally, mass bioaccumulation by microorganisms in the aeration tank and the sludge digestion process (the formation of immobile heavy metal sulphides) facilitate the transfer of heavy metals from sewage to sludge. The changes described above result in the formation of a variety of chemical forms of heavy metals accumulated in the sewage sludge. Only metal mobile forms migrate from sewage to the soil environment.

The major factors that affect the heavy metal bioavailability to plants include the following: the total metal content in the soil, kind of metal, the pH of the soil, the content of organic matter and clay fraction. Bioaccumulation of heavy metals in plants growing on soils contaminated with heavy metals depends on the plant kind and the content of metal mobile fractions in the soil. In the soil analysis, multi-step extraction of heavy metals should be used [1-2]. Legal regulations binding in Poland impose a limit on the maximum content of heavy metals in the municipal sewage sludge applied to soils (J. of Laws No. 137, item 924 of 13 July 2010). The regulations refer to the cumulative content of lead, cadmium, mercury, nickel, zinc copper and chromium after the mineralization in aqua regia (or concentrated acids), determined using the AAS method [3]. The law does require speciation of heavy metals contained in the sewage sludge. Recent analytical techniques, however, make it possible to assess the actual hazard posed by the soil exposition to sewage sludge containing heavy metals when their direct transfer to the soil involves only their mobile forms.

In the investigations, I used raw, and aerobically and anaerobically digested sewage sludge from sewage treatment plants located in central Poland, which are characterised by diversified content of microcontaminants. The sludge under consideration was subjected to speciation analysis. Basically, the speciation analysis with the Kersten and Förstner method involves chemical extraction of heavy metals contained in the sewage sludge. As a result of the process, extracts containing metals in the mobile, organic, oxidized, reduced and immobile forms are obtained. The diagram of the complete Kersten and Förstner procedure is shown in Table 1. Owing to the use of the speciation analysis, it is possible to accurately determine the concentrations of mobile forms of heavy metals. That is done with respect to the total heavy metal content, determined with the reference method for sewage sludge investigations (J. of Laws No. 137, item 924 of 13 July 2010)

Inter-laboratory investigations were conducted that aimed at comparing different sequential extraction procedures. It was found out that the four-step procedure developed by the European Community Bureau of Reference, called BCR for short, is the optimum means of identifying metal fractions in sewage sludge samples [4-5,7-16]:

- Step I: CH₃COOH extraction to determine the content of metals that are accessible and bound to carbonates (FI exchangeable fraction),
- Step II: NH₂OH·HCl extraction to determine the content of metals bound to amorphous iron and manganese oxides (FII reducible fraction),
- Step III: H₂O₂/CH₃COONH₄ extraction to determine the content of metal-organic and sulphide fractions (FIII oxidizable fraction).
- Step IV: mineralisation of the residual fraction in a mixture of concentrated acids (HCl, HF, HNO₃) to determine the content of metals bound to silicates (FIV residual fraction).

Table 1

Fraction/form of occurrence	Kersten and Forstner - extended procedure (1986)	Tessier's procedure (1979)	EC/BCR proce- dure	
Exchangeable ions	1mol/L CH ₃ COONH ₄	1mol/l MgCl ₂	0.1mol/L	
Carbonate- bound metals	1mol/l CH ₃ COONa, pH=5 in/ CH ₃ COOH	1mol/l CH ₃ COONa, pH=5 in/ CH ₃ COOH	CH ₃ COOH. Shake for 16h	
Easily reduci- ble fractions (e.g. Mn ox- ides)	0.01 mol/l NH ₂ OH HCl w/ 0.01 mol/l HNO ₃	0.04 mol/l NH ₂ OH HCl + 25% CH ₃ COOH, 90 [°] C	0.1mol/l NH2OH HCl	
Moderately reducible fractions (e.g. Fe ox- ides)	0.1 mol/l oxalic buffer (pH=3)		conc. HNO ₃ (pH =2) Shake for 16h	
Sulphides/ organic frac- tion	30% H ₂ O ₂ pH=2/ 0.02 mol/l HNO ₃ extraction with 1mol/l CH ₃ COONH ₄ , 6% HNO ₃	30% H ₂ O ₂ pH=2/ 0.02 mol/l HNO ₃ 85°C, 2mol/l CH ₃ COONH ₄ + 20% HNO ₃	8.8 mol/l H ₂ O ₂ (x2) 85°C; pH=2, 1 mol/l CH ₃ COONH ₄ Shake for 16h	
Residual frac- tion	hot, concentrated HNO ₃	HF/HClO ₄ or aqua regia	aqua regia	

Diagram of the sequential analysis for separating sludge samples [5,7]

Metals that occur in water-soluble compounds and those bound to carbonates are thought to be the most mobile ones (Table 1). Metals bound to iron and manganese oxides are released into the environment much more slowly. Under particular conditions of pH and oxidation-reduction potential, the metals bound in FII can demonstrate significant bioavailability. Metals that form stable compounds with organic matter, or occur in the form of sulphides are considered potentially immobile. Metals bound to aluminosilicates are regarded as unavailable [13]. In the literature, many studies can be found that describe investigations into sequential extraction of heavy metals from soils, sewage sludge, river (sea) sediments and composts [7-20]. In order to conduct one series of sequential extraction experiments, I used four sludge samples of 0.5 g (sludge mass ~ 2 g altogether), then subjected to the BCR procedure. It is not recommended to employ larger test portions as that can lead to chemical interference.

I defined the **metal mobility** as a decimal of the content of heavy metal mobile compounds in the matrix.

$$WM = 100\% \frac{\sum_{i=1}^{2} m_i}{\sum_{i=1}^{4} m_i} = 100\% (F_1 + F_2)$$
(2)

where:

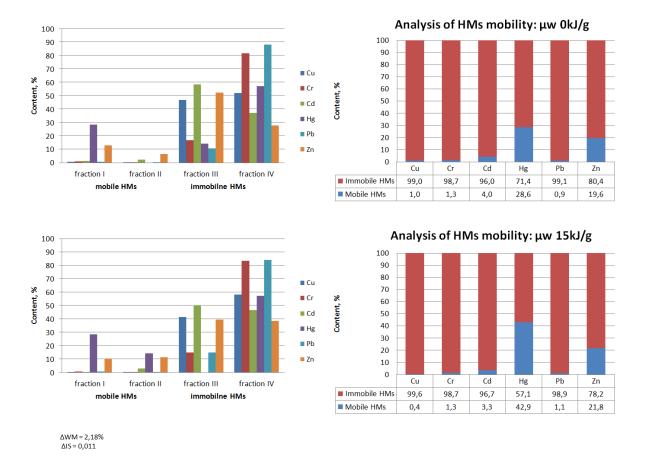
m_i – metal mass in the i-th fraction

 F_1 – relative metal content in the exchangeable fraction

 F_2 – relative metal content in the reducible fraction

Metal stability index I_S provides information on the strength of metal bonds with mineralorganic soil components over the time that elapsed from the moment of contamination. It can take on the values in the range $1 \ge I_S > 0$. If a metal occurs in the easily soluble and exchangeable form, the value of I_S is close to zero, whereas when $I_S \approx 1$, the metal predominantly occurs in stable, mainly residual forms [11]. Intermediate values indicate the metal occurrence in both mobile and stable forms. The index I_S is expressed by the formula [11]:

$$IS = \sum_{i=1}^{k} \frac{i^2 \cdot F_i}{k^2}$$
(3)


where:

i – denotes a subsequent step of the sequential extraction j,

k – maximum number of extractions (in the BCR procedure k=4),

F_i - relative metal content in the ith chemical form

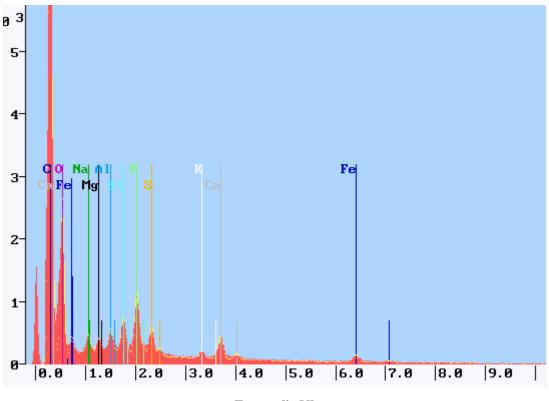

At the initial stage of investigations, prior to the start of fractionation, I dried the samples to constant mass at the temperature of 105°C. The literature does not show a uniform approach to this important issue. In my opinion, it is reasonable not to modify the matrix thermally. I observed the above effect when trying to assess the effect of microwave radiation on the mobility of heavy metals. The variation in the mobility of heavy metals (Fig.1) is random in character and cannot be attributed to the effect of microwave radiation dosage [17].

Fig. 1. The effect of microwave radiation (2450 MHz) on heavy metal mobility in sewage sludge collected from the sewage treatment plant in Sitkówka-Nowiny

I determined the content of heavy metals in individual forms with Flame Atomic Absorption Spectrometry (FAAS) using a PerkinElmer 3100 spectrometer. The results of investigations were subjected to the statistical analysis to eliminate gross errors. For that sake, I employed Dixon and Grubbs tests.

The occurrence of interception matrices for metal fraction $FI \div FIV$ is assumed a priori. However, I confirmed their presence using the roentgen microanalysis. In the exemplary sewage sludge from the sewage treatment plant in Daleszyce (the Świętokrzyskie province) heavy metal compounds with the organic matter, iron oxides, sulphides and aluminosilicates are found (Fig.2).

Energy [keV]

Fig. 2. X-Ray microanalyses spectrum of the sewage sludge sample from the sewage treatment plant in Daleszyce

My greatest scientific achievement is the publication of the monograph entitled "Mobility of selected heavy metals in sewage sludge". The study was published in July 2013 by the Kielce University of Technology Publishing House. The reviewers of the dissertation were Prof. Michał BODZEK, Dr habil. Eng. and Prof. Maria WACŁAWEK, Dr habil. Eng. In the study I presented the results of investigations into the mobility of heavy metals at 23 sewage treatment plants located in central Poland (Table 2).

Table 2

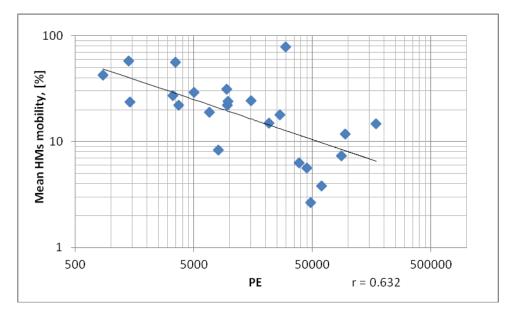
Sewage sludge collected from selected sewage treatment plants located in central Poland

Sample notation	Location	Type of sewage treatment plant	PE	Sludge treat- ment method	Sludge use
01	Gnojno	Mechanical-	850	Aerobic	Remediation of soilles
01	Chojno	biological	000	sludge	ground
		olological		digestion	ground
02	Pacanów	Mechanical-	1400	Aerobic	Reclamation of land for
02	1 acallow		1400		
		biological, EvU-Perl		sludge	agricultural purposes
		technology		digestion	
03	Barcza	Mechanical-	1444	Aerobic	Insulation layers at the
		biological,		sludge	landfill
		EvU-Perl		digestion	
		technology			
04	Kostomłoty-	Mechanical-	3333	Press	Insulation layers at the
	Laskowa	biological, SBR		dewatering	landfill
		technology			
05	Bartków	Mechanical-	3496	Dewatering	Insulation layers at the
05	Dartkow	biological	5470	Dewatering	landfill
06	Cakl-4	Ų	2725	Derrorent	
06	Sobków	Mechanical-	3725	Drymet	Insulation layers at the
		biological, SBR		system	landfill
		technology			
07	Daleszyce	Mechanical-	5000	Aerobic	Remediation of soilles
		biological, SBR		sludge	ground
		technology		digestion	
08	Strawczyn	Mechanical-	6770	Aerobic	Remediation of soilles
		biological		sludge	ground
		U		digestion	0
09	Małogoszcz-	Mechanical-	8000	Aerobic	Thermal disposal
0,	Zakurcze	biological	0000	sludge	riterinar ansposar
	Zukureze	olologicui		digestion	
010	Cedzyna	Mechanical-	9466	Aerobic	Insulation layers at the
010	Ceuzyna		9400		
		biological, EvU-Perl		sludge	landfill
0.1.1		technology	0.5.5.0	digestion	x 1 1 1 1
O11	Mniów	Mechanical-	9550	Aerobic	Insulation layers at the
		biological, COMA-		sludge	landfill
		TEC technology		digestion	
O12	Ożarów	Mechanical-	9660	Belt press	Insulation layers at the
		biological		dewatering	landfill
013	Opatów	Mechanical-	15240	Digestion in	Reclamation of land for
	1	biological	-	open digester	agricultural purposes
O14	Kornica	Mechanical-	21594	Imhoff	Insulation layers at the
U.I.1	110111104	biological	=1071	digestion	landfill
015	Busko-	Mechanical-	26444	Aerobic	Land reclamation
015	Siesławice	biological, PUB	20444		
	Siesiawice	-		sludge	
017		technology	20550	digestion	a b b b b b b b b b b
016	Sandomierz	Mechanical-	29550	Aerobic	Crops not intended fo
		biological		sludge	human consumption o
				digestion	feed production
017	Włoszczowa	Mechanical-	38522	Dewatering	Land reclamation
		biological, UCT		and	
		technology		disinfection	
018	Pińczów	Mechanical-	45000	Imhoff	Land reclamation
510	1 11102.0 W	biological, hybrid	12000	digestion	Lana reclamation
				urgestion	
	1	technology		1	

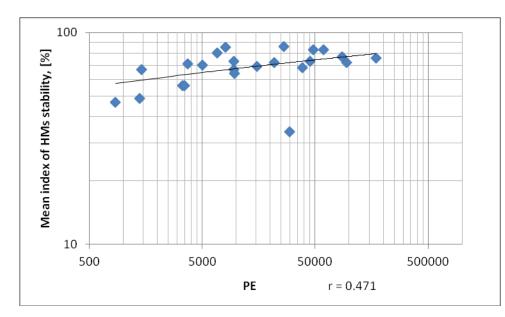
Sample	Location	Type of sewage	PE	Sludge treat-	Sludge use
notation		treatment plant		ment method	
O19	Jędrzejów	Mechanical-	48272	Liming	Crops not intended for
		biological, PUB			human consumption or
		technology			feed production
O20	Skarżysko-	Mechanical-	59500	Digestion	Insulation layers at the
	Kamienna	biological,		in the cov-	landfill
		hybrid technology		ered digester	
O21	Ostrowiec Św.	Mechanical-	87150	Digestion	Reclamation of land for
		biological		in the diges-	agricultural purposes
		-		tion tank	
					Crops not intended for
O22	Starachowice	Mechanical-	95000	Digestion	human consumption or
		biological		in the diges-	feed production
		-		tion tank	-
O23	Sitkówka-	Mechanical-	172569	Digestion	Thermal disposal
	Nowiny	biological, PUB		in the cov-	
	_	technology		ered digester	

Table 2 continued

In study [18], I demonstrated that for selected facilities O1÷O23, the percentage content of individual fractions of heavy metals was dependent on the sludge pH. Although the migration of heavy metals delivered to the soil with sewage sludge is small, yet it may increase in sandy soils with low pH.


The comparative analysis of heavy metal content in the sewage sludge collected from 23 municipal sewage treatment plant located in central Poland shows that only in three cases the content values of the examined heavy metals in the sewage sludge intended for agricultural use exceeded the permissible values. That referred to the Zn content in the sewage sludge from the sewage treatment plants O7, O20 and O22, and also Cr content in the sewage sludge from the sewage treatment plant O20. The source of chromium in the sewage sludge from the sewage treatment plant O20 is most likely the metallurgical industries sewage. As regards sewage treatment plants O7 and O22, it should be emphasised that the contents of heavy metals did not exceed the limit values, binding in Poland, for the sludge purposed for land use. The mean percentage content of examined heavy metals in the sewage sludge from facilities O1÷O23 can be sorted by decreasing values:

- for Cu: FIII (64.5%) > FIV (27.1%) > FII (4.9%) > FI (3.5%)
- for Cr: FIV (50.7%) > FIII (35.6%) > FI (7.6%) > FII (6.1%)
- for Cd: FIV (43.2%) > FIII (28.7%) > FI (14.2%) > FII (13.9%)
- for Ni: FIV (49.0%) > FIII (22.6%) > FII (15.1%) > FI (13.3%)
- for Pb: FIV (74.5%) > FIII (12.1%) > FII (6.8%) > FI (6.6%)
- for Zn: FIV (37.1%) > FIII (33.9%) > FII (15.6%) > FI (13.4%)


On the basis of the analysis of heavy metal mobility in the sewage sludge from selected sewage treatment plants located in central Poland, it can be concluded that heavy metals occur in the sludge mainly bound to aluminosilicates. In those forms, they do not pose an environmental hazard because of their strong immobilisation. For five of the examined metals, the mean degree of immobilisation in the residual fraction ranges from 37.1 to 74.5%. In this fraction, lead shows the highest content. Similarly, the content of chromium and nickel is also high. Only the mean content of copper in the residual fraction is lower and amounts to 27.1%. Copper occurs mainly in the oxidizable fraction FIII.

In study [19], I confirmed statistically significant dependence of the mean heavy metal mobility in sewage sludge on the design capacity of the sewage treatment plant PE. Under conditions prevailing in Poland, a majority of sewage treatment plants is underloaded. The issue of hydraulic underloading of the sewage treatment plant results from the fact that too great amount of sewage was assumed, at the design stage, to be inflowing at the facility. The results of investigations into the relation between the mean heavy metal mobility and the actual capacity of the sewage treatment plant were published in study [18].

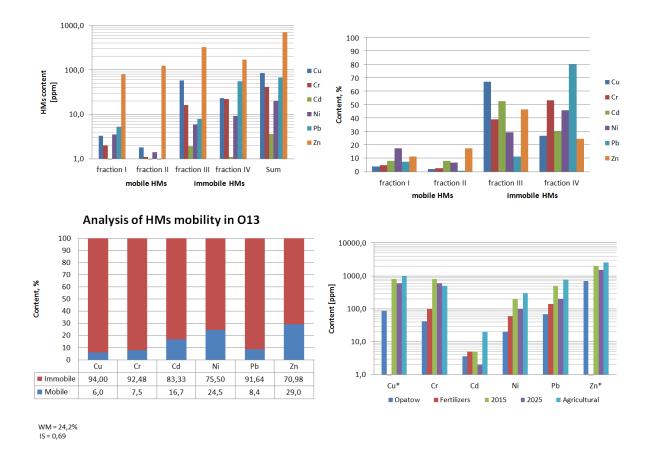
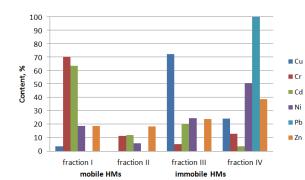

I demonstrated that sewage treatment plants of relatively high capacity produce sewage sludge, in which heavy metals occur primarily in immobile compounds that are not bearing much significance from the toxicological standpoint (Fig.3). Heavy metals form stable compounds in the sewage sludge (Fig.4).

Fig. 3. The correlation between the mean heavy metal mobility and the sewage treatment plant capacity O1–O23


Fig. 4. The correlation between the mean index of heavy metal stability and the sewage treatment plant capacity O1–O23

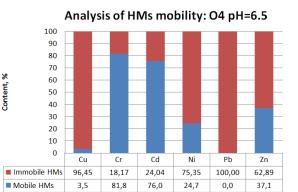


Fig.5. Mobility of heavy metals in the sewage sludge on the example of the sewage treatment plant O13 and the metal content in accordance with the legislation in force and planned alterations [3,6,16]

For almost all facilities, heavy metal content in the sewage sludge did not exceed the limit values for sewage sludge intended for agricultural use. That is confirmed by exemplary results of speciation analysis for the sewage sludge from the sewage treatment plant in Opatów (Fig.5).

Sewage sludge liming is a recommended method for temporary immobilisation of heavy metals. Although liming tends to reduce the nutrient content of sludge, it is still used as the best form of prevention of heavy metal absorption by plants [12]. On the example of sewage sludge collected at the facility in Kostomłoty-Laskowa, I showed that it is possible that the reverse phenomenon can occur. At already pH=11.9, the mean mobility of heavy metals increased by approx. 0.48%. It turned out that increase in the sludge pH from 6.5 to 11.9 produced a decrease in the stability index of heavy metals in the sewage sludge. Detailed analysis of the experimental results confirmed that the observed effect resulted from a substantial increase in copper mobility in the sewage sludge from O4 (Fig.6).

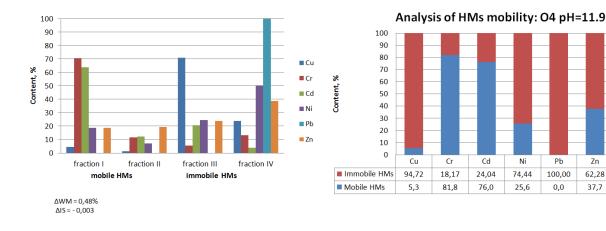
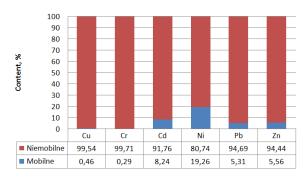
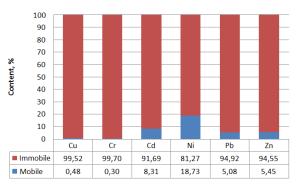
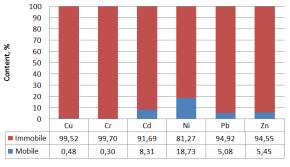
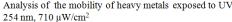
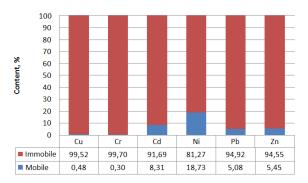




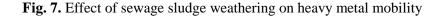
Fig. 6. Effect of sewage sludge alkalisation on heavy metal mobility (pH=11.9)


On of the fundamental questions I tried to answer in study [18] concerns the durability of the immobilization of heavy metals in the sewage sludge. The problem is of key importance because sewage sludge, before it is managed, often remains at the sewage treatment plant for a lengthy period of time. The issue arises whether the immobilization of heavy metals is durable, i.e. whether it is certain that the transfer of metals to mobile forms due to physical and chemical factors like electromagnetic radiation or temperature will not occur. To answer the question posed above, I conducted an experiment in which the sewage sludge samples from the sewage treatment plants O20 and O23 was subjected to ultraviolet radiation with wavelengths $\lambda \approx 250 \div 265$ nm, at the intensity of 710 μ W/cm². At the same time, I examined the effect of temperature variation (253K÷293K) on the mobility of heavy metals. Prior to sequential extraction, sewage sludge samples were alternately irradiated and frozen out for a period of 22 days. Simultaneously, the reference sample was kept at dry-air conditions at the temperature 293K for 22 days. The results of investigations are shown in Fig. 7.





Analysis of the HMs mobility exposed to UV and temperature (253K) during 22 days (SS)



Analysis of the mobility of HMs exposed at 253K

ΔWM = 0,001% ΔIS = 0,000

I observed that weathering processes do not significantly affect the mobility of heavy metals. Sewage sludge exposure to environmental factors does not alter the stability of heavy metal compounds (Δ IS=0).

From the toxicological standpoint, an important issue is to find out how the method of treatment of sewage sludge in the digestion tank affects the mobility of heavy metals. I put forward a research hypothesis that anaerobic stabilization of sewage sludge will change the form of heavy metals in sludge in a quantitatively and statistically significant manner. Sewage sludge from the facilities in Skarżysko-Kamienna and Sitkówka-Nowiny was subjected to investigations following the BCR procedure. As shown in Fig. 8, anaerobic sewage sludge digestion in the digestion tank results in the temporary immobilisation of heavy metals in the oxidizable fraction (Iraction III in accordance with BCR) at the expense of the mobile fraction (I+II).

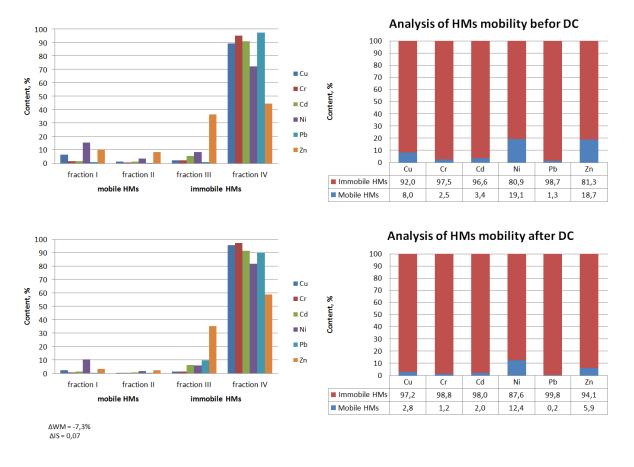


Fig. 8. Effect of mesophilic digestion of sewage sludge on heavy metal mobility

I also demonstrated that metals bound to aluminosilicates, and their crystalline structures, are immobile, thus of minor importance as regards toxicity.

The experimental results I obtained, make it possible to understand why the mobility of heavy metals in sewage sludge from sewage treatment plants with properly operating mesophilic digestion is low.

In the final stage of my investigations into heavy metal mobility, I determined to what extent sewage sludge incineration affects the immobilisation of heavy metals contained in the sewage sludge from the municipal sewage treatment plant in Skarżysko-Kamienna. The choice of the facility was not accidental because sewage sludge produced there (Fig.9) was characterised by a high content of Zn and Cr.

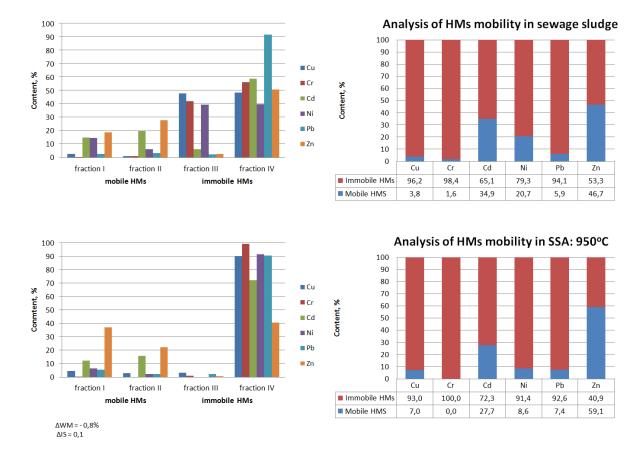


Fig. 9. Effect of sewage sludge incineration on heavy metal mobility

Heavy metal behaviour in incineration is affected not only by the temperature of thermal treatment, but also by metal volatility. Cadmium and zinc are classified as volatile metals, chromium, copper, nickel are non-volatile metals, and lead is moderately volatile. In the ashes of concern, I found the accumulation of metals mainly in fraction IV, which is unavailable to plants [20]. That resulted in a substantial increase in the stability index (Δ IS=0.1), and a noticeable decrease in the mean mobility of heavy metals (Δ WM=-0.8%). I demonstrated that within the range of sewage sludge incineration temperatures, the mobility of copper and zinc originating from ashes grew with an increase in the incineration installations, makes it possible to prevent an increase in the mobility of copper and zinc. However, a local increase in temperature in the installation, to above 900°C, may produce an adverse effect on the properties of the ash (Fig.9).

4.4. Main achievements of the habilitation dissertation

- I was the first to demonstrate that the mean content of mobile forms of heavy metals decreases with increasing PE.
- I proved that sewage sludge exposure to environmental factors is not accompanied by a significant increase in heavy metal mobility.
- I demonstrated the sewage sludge under consideration poses a lower environmental hazard than that predicted by the legislation in force. The content of mobile fractions of heavy metals in sewage sludge is usually low.
- I demonstrated that sewage sludge incineration increases the average value of the stability index of heavy metals in the matrix.
- I demonstrated that changes planned to be made in the limit values for heavy metal content in the municipal sewage sludge intended for land, should account for the forms of heavy metal occurrence.

4.5. Cited references

- 1. Gruca-Królikowska S., Wacławek W.: Metals in the environment part II. Effect of heavy metals on plants, *Chemia Dydaktyka Ekologia Metrologia* 11, pp. 41-55, 2006.
- 2. Dziadek K., Wacławek W.: Metals in the environment. Part I heavy metals (Zn,Cu,Ni,Pb, Cd) in the soil environment, *Chemia Dydaktyka Ekologia Metrologia* 10, pp. 33-44, 2005.
- 3. Regulation of the Minister of Environment of 13 July 2010 on municipal sewage sludge (J. of Laws No. 137, item 924)
- 4. Kalembasa D., Majchrowska-Safaryan A.: Fraction of heavy metals in the beds after the cultivation mushroom from mushroom factor, *Ochrona Środowiska i Zasobów Naturalnych* 41, pp. 572-577, 2009.
- Ure A. M., Quevauviller Ph., Muntau H., Gripink B.: Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extract techniques undertaken under auspices of the BCR of the Commission of the European Communities. Intern. J. Environ. Anal. Chem. 51, pp. 135-151, 1993.
- 6. Working document on sludge. 3rd Draft EC DG XI, ENV/E.3/LM, 2000.
- 7. Quevauviller Ph.: Methodologies for soil and sediment fractionation studies Royal Society of Chemistry. Cambridge 2002.
- 8. Alvarez E.A., Mochón M.C., Jiménez Sánchez J.C., Rodríguez M.T. Heavy metal extractable forms in sludge from wastewater treatment plants, Chemosphere, 47, pp. 765-775, 2002.
- 9. Dahlin C.L., Williamson C.A., Collins W.K., Dahlin D.C. Sequence extraction versus comprehensive characterization of heavy metal species in brownfield soils, Environmental Forensics, 3, pp. 191-201, 2002.
- Obarska-Pempkowiak H., Butajło W., Staniszewski A.: Possibility of sewage sludge application to land in view of the content of the heavy metals (in Polish). *Inżynieria i Ochrona Środowiska* 6, pp. 179-190, 2003.
- 11. Han F.X., Banin A., Kingery W.L., Triplett G.B., Zhou L.X., Zheng S.J.: New approach to studies of heavy metal redistribution in soil. Advances in Environmental Research, 8, pp. 113-120, 2003.
- 12. Wilk M., Gworek B.: Heavy metals in sewage sludge (in Polish). Ochrona Środowiska i Zasobów Naturalnych 39, pp. 40-59, 2009.
- 13. Chen M., Li X.M., Yang Q., Zeng G.M., Zhang Y., Liao D.X., Liu J.J., Hu J.M., Guo L.: Total concentration and speciation of heavy metals in sewage sludge from Changasha, Zhuzhou and Xiangtan in middle south region of China. *Journal of Hazardous Materials* 160, pp. 324-329, 2008.
- 14. Szumska M., Gworek B.: Methods of determination of heavy metal fractions in sewage sludge (in Polish). *Ochrona Środowiska i Zasobów Naturalnych* 41, pp. 42-63, 2009.
- 15. Dąbrowska L., Papis D.: Speciation of heavy metals in conditioned sewage sludge stabilised by anaerobic digestion (in Polish). *Inżynieria i Ochrona Środowiska* 9, pp. 365-377, 2006.
- Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the law on fertilisers and fertilising; (J. of Laws No. 119, item 765)
- 17. Radosz M., Gawdzik J.: Assessment of microwave disinfection of sewage sludge on heavy metal mobility (in Polish), Gaz, Woda i Technika Sanitarna 4, pp. 24–26, 2005.
- Gawdzik J. Mobility of heavy metals in sewage sludge (in Polish). Monographs, Studies, Dissertations, M44, Kielce University of Technology, PL ISSN 1897-2691, Kielce 2013
- 19. Gawdzik J., Gawdzik B.: Mobility of heavy metals in municipal sewage sludge from different throughput sewage treatment plant. Pol.J.Environ.Stud. vol. 21, No. 6, pp. 1603-1611, 2012.
- 20. Latosińska J., Gawdzik J.: Effect of incineration temperature on the mobility of heavy metals in sewage sludge ash. Environment Protection Engineering vol. 38, No. 3, pp. 31-44, 2012

4.6. List of studies related to the subject matter of the monograph

1. Bezak-Mazur E. Dąbek L., Gawdzik J.: Influence of Mineralization and Analysis Technique on the Results of Determination of Iron and Nickel in Industrial Wastes, Polish Journal of Environmental Studies 10(1), pp. 63-66, 2001. JCR

Impact Factor	The contribution of the candidate	
1.111	20%	
	conducting research by AAS, statistical analysis	
for a given calendar year: 0.000	of test results.	

2. Gawdzik J.: Speciation of heavy metals in sewage sludge on the example of a selected municipal sewage treatment plant (in Polish), Ochrona Środowiska Vol. 32, No. 4, pp. 15-19, 2010. JCR

Impact Factor	The contribution of the candidate
0.958 for a given calendar year: 0.641	100%

3. Gawdzik J., Gawdzik B.: Mobility of heavy metals in municipal sewage sludge from different throughput sewage treatment plant. Pol.J.Environ.Stud. vol.21, No.6, pp. 1603-1611, 2012. JCR

Impact Factor	The contribution of the candidate
1.111	50%
for a given calendar year: 0.462	designing the concept of publication, performing research
	by BCR/AAS, statistical analysis of test results

 Latosińska J., Gawdzik J.: Effect of incineration temperature on the mobility of heavy metals in sewage sludge ash. Environment Protection Engineering vol. 38, No. 3, pp. 31-44, 2012. JCR

Impact Factor	The contribution of the candidate	
0.412	40%	
	designing research, performing research by AAS	
for a given calendar year: 0.423	BCR/AAS, statistical analysis of test results	

5. Gawdzik J., Latosińska J.: Speciation of heavy metals in municipal sewage sludge from different capacity sewage treatment plants, CRC Press, Boca Raton, New York, pp. 285-290, 2010.

Impact Factor	The contribution of the candidate
0.000 for a given calendar year: 0.000	50% designing the concept of publication, performing research
	by BCR/AAS, statistical analysis of test results

the second quarter 2014 will be published: ¹

6. Gawdzik J., Długosz J., Urbaniak M: General characteristics of the quantity and quality of sewage sludge from selected wastewater treatment plants in the świętokrzyskie province, Environment Protection Engineering. JCR

Impact Factor	The contribution of the candidate
-	35%
for a given calendar year: -	designing the concept of publication, performing research by AAS statistical analysis of test results

Date 9th Dec. 2013

Signature:

Jaos Sus ga comile

²¹

¹ confirmed by the Publisher