

Politechnika Wrocławska

Organization of construction works

Phd. Aleksandra Sambor

time

Self-evident truth

• **Project time management** involves the processes required to finish a project on

Initiating	Planning	Executing	Monitoring Controlling	Closing
None	Plan Schedule Management	None	Control Schedule	None
	Define Activities			
	Sequence Activities			
	Estimate Activity Resources			
	Estimate Activity			
	Durations			

Project time management process overview

1.Plan schedule management - establishing policies, procedures and documentation for project schedule

2. **Define activities** - identification of specific activities to be performed to produce the project deliverables

3. Sequence activities - identification and documentation of relationships between the project activities

4. Estimate activity resources - estimation of type and quantities of material, people, equipment and supplies

5. Estimate activity durations - estimation of number of work periods needed to complete each activity with estimated resources

6. **Develop schedule** - analysis of activity sequences, durations, resource req. and schedule constraints to finally create the project schedule

7. Control schedule

Project time management process overview

Project scheduling - process overview

Graphical/text representation of project schedule

Planning schedule management

- Scheduling methodology and tools to be used
- Acceptable level of accuracy
- Units of measure
- Schedule maintenance updating schedule
- Control thresholds
- Rules of performance estimation (definition of task % complete)
- Reporting formats

Defining activities

Copyright 2016 Disciplined Agile Consortium

Work package decomposition usually supported by Work Breakdown Structure (WBS) method

Sequence activities

Inputs

- .1 Schedule management plan
- .2 Activity list
- .3 Activity attributes
- .4 Milestone list
- .5 Project scope statement
- .6 Enterprise environmental factors
- .7 Organizational process assets

Tools & Techniques

1 Precedence diagramming method (PDM) 2 Dependency determination 3 Leads and lags

.1 Project schedule network diagrams .2 Project documents updates

Outputs

Precedence Diagramming Method (PDM)

- **Precedence Diagramming Method** (PDM) is used for constructing a schedule model
- In schedule model all activities are represented by nodes and are **graphically linked** by one or more **logical relationships** (SF, FF, SS - explained on next slide) to show the **sequence** in which the activities are to be performed
- Activity-on-node (AON) is one method of representing a precedence diagram (used in most project management software packages)

Precedence Diagramming Method (PDM)

Dependency types:

- mandatory predecessor activity must be completed before successor (physical necessity)
- external
- discretionary (preferential) based on best practices, business knowledge etc.

Leads and lags

• Lead is the amount of time the successor activity can be advanced with respect to a predecessor activity

• Lag is the amount of delay time between activities

Project Schedule Network Diagram

Estimate Activity Resources

.8 Organizational process assets

plan

Estimate Activity Durations

Inputs

- .1 Schedule management plan
- .2 Activity list
- .3 Activity attributes
- .4 Activity resource requirements
- .5 Resource calendars
- .6 Project scope statement
- .7 Risk register
- .8 Resource breakdown structure
- .9 Enterprise environmental factors
- .10 Organizational process assets

Tools & Techniques

- .1 Expert judgment
- .2 Analogous estimating
- .3 Parametric estimating
- .4 Three-point estimating
- .5 Group decision-making techniques
- .6 Reserve analysis

Outputs

.1 Activity duration estimates .2 Project documents updates

Activity estimation (simple) math

- Effort = Quantity of Work/Productivity
- Duration = Quantity of Work/(Productivity x Availability

Estimating Activity Durations

- Expert judgment
- Analogous estimating
- Parametric estimating (algorithm is used to calculate cost or duration based on historical data and project parameters)
- 3-point estimating (**PERT** Program Evaluation and Review Technique)
- Group Decision-Making Techniques
- Reserve Analysis

PERT 3-point duration estimating

- Most likely (tM) This estimate is based on the duration of the activity, given the resources likely to be assigned, their productivity, realistic expectations of availability for the activity, dependencies on other participants, and interruptions (in many cases mean duration)
- **Optimistic (tO)**. The activity duration based on analysis of the best-case scenario for the activity
- **Pessimistic (tP)**. The activity duration based on analysis of the worst-case scenario for the activity

Calculating expected duration

 To calculate expected duration - tE we have to assume distribution of values (Triangular or beta - original PERT) within the range of the three estimates

$$tE = (t0 + 4tM + tP)/6$$
 Beta (PERT)

The PERT distribution interprets parameters (the same three like in Triangular distribution) with a smooth curve that places less emphasis on the furthest extreme

Develop Schedule

Inputs

Tools & Techniques

- .1 Schedule management plan
- .2 Activity list
- .3 Activity attributes
- .4 Project schedule network diagrams
- .5 Activity resource requirements
- .6 Resource calendars
- .7 Activity duration estimates
- .8 Project scope statement
- .9 Risk register
- .10 Project staff assignments
- .11 Resource breakdown structure
- .12 Enterprise environmental factors
- .13 Organizational process assets

- .1 Schedule network analysis
- .2 Critical path method
- .3 Critical chain method
- 4 Resource optimization techniques
- .5 Modeling techniques
- .6 Leads and lags
- .7 Schedule compression
- .8 Scheduling tool

Outputs

- .1 Schedule baseline
- .2 Project schedule
- .3 Schedule data
- .4 Project calendars
- .5 Project management plan updates
- .6 Project documents updates

Tools and Techniques for schedule development

Schedule Network Analysis:

- Critical Path Method (CPM)
- Critical Chain Method (CCM)
- Resource Optimization Techniques (levelling and smoothing)

Critical Path Method (CPM) example

Critical Chain Method (CCM) example

Resource Optimization Techniques example of resource levelling

Activities Before Resource Leveling

Day 1	Day 2	Day 3
Tom: 8 hrs Sue: 16 hrs	Tom: 8 hrs	

Two typical modelling techniques used in project time management

 Using what-If Scenario Analysis we can evaluate scenarios in order to predict their effect (positive or negative) on project objectives (using Murphy Law - "What if the situation represented by scenario 'X' happens?")

• Schedule network analysis is performed to **compute the different scenarios**, such as: delaying a major component delivery, extending specific engineering durations, or introducing external factors, such as a strike or extreme weather conditions

• Simulation - calculation of multiple project durations with different sets of activity assumptions, usually using probability distributions constructed from the three-point estimates to account for uncertainty (e.g. Monte Carlo analysis)

Presenting and reporting project schedules

The project schedule is an output of a schedule model (tabular or graphical) that presents linked activities with planned dates, durations, milestones, and resources

Techniques for presenting project schedules

- Bar charts (Gantt charts) represent schedule information where activities are listed on the vertical axis, dates are shown on the horizontal axis, and activity durations are shown as horizontal bars placed according to start and finish dates
- **Milestones charts** similar to Gantt but only identify the scheduled start or completion of major deliverables and key external interfaces

• **Project schedule network diagrams** usually presented in the activity-on-node diagram format showing activities and relationships without a time scale, sometimes referred to as a pure logic diagram

Summary Schedule

Techniques for presenting project schedules

	Milestone Schedule							
Activity Identifier	Activity Description	Calendar units	Project Schedule Time Frame					
			Period 1	Period 2	Period 3	Period 4	Period 5	
1.1.MB	Begin New Product Z	0						
1.1.1.M1	Complete Component 1	0			◇			
1.1.2.M1	Complete Component 2	0			\diamond			
1.1.3.M1	Complete Integration of Components 1 & 2	0					\diamond	
1.1.3.MF	Finish New Product Z	0					\diamond	

Data Date

Activity	Activity Description	Calendar units	Project Schedule Time Frame					
Identifier			Period 1	Period 2	Period 3	Period 4	Period 5	
1.1	Develop and Deliver New Product Z	120						
1.1.1	Work Package 1: Component 1	67						
1.1.2	Work Package 2: Component 2	53						
1.1.3	Work Package 3: Integrated Components 1 and 2	53						

Techniques for presenting project schedules

Activity	Activity Description	Calendar	Project Schedule Time Frame					
Identifier	hoursy becaujuan	units	Period 1	Period 2	Period 3	Period 4	Period 5	
1.1.MB	Begin New Product Z	0	∳					
1.1	Develop and Deliver Product Z	120						
1.1.1	Work Package 1: Component 1	67		I				
1.1.1.D	Design Component 1	20		FS FS				
1.1.1.B	Build Component 1	33		-	þ			
1.1.1.T	Test Component 1	14						
1.1.1.M1	Complete Component 1	0	55		₩	h		
1.1.2	Work Package 2: Component 2	53			þ!			
1.1.2.D	Design Component 2	14		þ				
1.1.2.B	Build Component 2	28	<u> </u>		• ¦			
1.1.2.T	Test Component 2	11		↓				
1.1.2.M1	Complete Component 2	0		4				
1.1.3	Work Package 3: Integrated Components 1 and 2	53			i ∥⊏		<u> </u>	
1.1.3.G	Integrate Components 1 and 2 as Product Z	14			╎╎╙╴	5		
1.1.3.T	Complete Integration of Components 1 and 2	32					É.	
1.1.3.M1	Test Integrated Components as Product Z	0					₽Ŝη	
1.1.3.P	Deliver Product Z	7			l i		F	
1.1.3.MF	Finish New Product Z	0					→	

1

Project schedule network diagram

Control Schedule

Inputs

- .1 Project management plan
- .2 Project schedule
- .3 Work performance data
- .4 Project calendars
- .5 Schedule data
- .6 Organizational process assets

Tools & Techniques

- .1 Performance reviews
- .2 Project management software
- .3 Resource optimization techniques
- .4 Modeling techniques
- .5 Leads and lags
- .6 Schedule compression
- .7 Scheduling tool

Outputs

- .1 Work performance information
- .2 Schedule forecasts
- .3 Change requests
- .4 Project management plan updates
- .5 Project documents updates
- .6 Organizational process assets updates

Politechnika Wrocławska

• Time = 250% overrun (10 years late)

 Cost = 1457% over estimated budget - the original estimated cost was \$AUS 7 million vs actual construction cost \$AUS 102 million.

 Quality = scope heavily modified over construction time

Sydney Opera House

Sydney Opera House

Construction began in 1957. and lasted about 15 years. At the project employed 10,000 builders. The huge structure is made mainly of steel, glass and concrete, and covers an area of 1.8 hectares. The roof of the building is a huge weight of 161 thousand tons, which maintains about 350 kilometers of connections. The original ceiling of the building is covered with over a million ceramic tiles, the effect of reflecting light on sunny days, which in Sydney quite a few. The building has 6225 square meters of glass and 645 kilometers of electric cables. There were numerous difficulties caused by the atypical form of shell vaults and more. It turned out that the substrate was not well studied at the stage of location selection. Preparation of the foundations required strengthening and creating a proper substructure of concrete columns with a diameter of nearly 1 meter. At the stage of interior finishing the building, many problems were encountered. As a result, construction costs have repeatedly exceeded the original cost estimate, and commissioning of the building on the national holiday on January 26 shifted from 1965 to 1973.

In June 2007, the building was inscribed on the UNESCO World Heritage List.