Aeration

Lecture 12

Politechnika Wrocławska

Basic information

Goals of aeration:

- Aeration is used for biological wastewater treatment by the activated sludge method.
- Oxygen is a substrate for the bio-oxidation of organic pollutants.
- The aerobic activated sludge process aims to reduce the concentration of non-settling dissolved and colloidal organic compounds.
- Keeping the wastewater in constant motion prevents the activated sludge from settling at the bottom, where the lack of oxygen would cause it to die.

Aeration systems

Surface aeration

- •Commonly used in the 1980s.
- •Currently used less frequently.
- •Low oxygen transfer efficiency (- -).
- •Low investment costs (+).
- •No additional equipment in the aeration system (+).
- •Ability to mix and aerate (+).

Surface aeration

Ejectors

Commonly used in very small facilities.
Alternatively used where a small amount of oxygen is needed to be introduced into the reactor (retention tanks).

- •Low investment costs (+).
- •No additional equipment in the aeration system (+).
- •Ability to mix and aerate (+).
- •Small amount of oxygen obtained with the operation of a single device (-).

Ejectors

Ejectors

Diffuser aeration

- •Compressed air is supplied through porous plates (known as filters or diffusers).
- •Aeration with air is carried out through coarse, medium, and **fine bubble diffusers.**
- •To increase oxygen transfer to the wastewater, diffusers should be placed as deep as possible (as technology allows). This prolongs the contact between air bubbles and wastewater and increases oxygen saturation concentration at higher pressure.

Diffuser aeration

Energy Consumption for Wastewater Aeration

Diffuser aeration

Blower station

Roots blowers

Also known as displacement blowers.
Small and medium wastewater treatment plants.
Operating principle similar to piston pumps.

Napowietrzanie ścieków

Turbo blowers

- •Also known as centrifugal or rotary blowers.
- •Medium (the boundary is lowering) and large wastewater treatment plants.
- •Operating principle similar to centrifugal pumps.

Oxygen Content in Air?

•21%.

•Considering the density, approximately 299 g/m³.

How well does oxygen dissolve in clean water?

•Rather poorly.

•Realistically no more than 20% (very little) - 40% (extremely much).

•Approximately 60-120 g O_2/m^3 of air.

- Approximately 60-120 g O₂/m³, on average 90 g O₂/m³.
 Average air demand for wastewater treatment plants (WWTP) is:
- •Approximately 2,600 kg O₂/h.
- How much air is that?
- •28,900 m³/h, and this estimate is still underestimated.
- •We use 1,000 kWh of electrical energy for this, which is as much as 4,600 households

Activated sludge

Dissolved oxygen concentration

Activated sludge

Dissolved oxygen concentration

Aeration algorithms

- Low oxygen concentration values.
- •The need to maintain 1.5-2 g O_2/m^3 is a thing of the past.
- •After optimization, it is possible to conduct wastewater treatment processes often below 0.3 g O_2/m^3 .

- + High oxygen transfer rate
- + Potential to induce simultaneous denitrification
- Problems with blower control
- Problems with mixing

Aeration algorithms

Intermittent Aeration

Aeration of the reactor to the required level for a predetermined time, then turning off aeration and maintaining anoxic conditions.

+ Conducting the denit/nit process in the aeration tank.

+ Better control under low load conditions at the WWTP.

- Frequent blower starts.

- Absolute need to install mixers in the aeration tank.

Aeration algorithms

Hourly Variability of Oxygen Concentration

Changing the set oxygen concentration during the day depending on the wastewater inflow and energy costs during the day (energy tariffs).

+ Potential possibility to optimize electricity consumption (tariffs).

- Problems with blower control.
- Problems with mixing in the aeration tank.

Aeration algorithms

Ammonium Nitrogen Concentration Control

Algorithm designed to maintain a constant ammonium nitrogen concentration at the outlet of the aeration tank.

+ Direct control of treated wastewater parameters.

+ Automatic detection of low and high loads in the wastewater.

- The need to have an ammonium nitrogen probe.

Oxygen transfer to reactor

Methods for Determining Oxygen Transfer to Water/Wastewater

Absorption Method
Desorption Method
Off-Gas Method

Absorption method

Absorption method

Absorption method

- •Practically, it is necessary to stop the wastewater inflow during measurements.
- •The possibility of determining the maximum efficiency of the aeration system.
- •Allows determining the guaranteed parameters of the aeration system.

Off-gas method

Off-gas method

Off-gas method

- •The method allows for measurements under operational conditions.
- •Point diagnosis of oxygen utilization.
- •Determining the temporal variability of oxygen utilization and determining the dynamics of diffuser fouling.

Possibilities of Applying Research Methods

	Absorption	Off-gas
Measurements during normal operation	No	Yes
Technological measurements	Yes/no	Yes
Diffuser fouling	Yes	Yes
Guarantee Measurements	Yes	No

Description of the methods included in ATV M209 Measurements of the oxygenation capacity of aeration devices in activated sludge installations.

