1.LOGIT METHOD

To calculate fractions: (table 1 in excel example)
Number of all living specimens or total fresh biomass, length of root, shoot in the control divide per your result For example:
Average number of shoot length $=0.85$, in the control $=8.5$ (for ex. for concentration 50\%)
Fraction $(\mathrm{F})=0.85 / 8.5$ if the result is more than 1 you should do additionally subtraction like this: $(1-$ your result)
2. To calculate $\operatorname{logit}(\mathrm{Y}): \mathrm{y}=\log (\mathrm{F} / 1-\mathrm{F})$
$\mathrm{F}=$ fraction
(table 2 in excel example)
You should also calculate \log from concentrations ($\log \mathrm{C}$)
3 Then you make a graph (chart)
Axis $\mathrm{X}=\log \mathrm{c}$
Axis $\mathrm{Y}=\log (\mathrm{F} / 1-\mathrm{F})$
4. You should add trend line and regression formula/ equation (double click on trend line)

It should be like this : $\mathrm{y}=1.5 \mathrm{x}-1.2$
$\mathrm{R}^{2}=0.87(\mathrm{R}$ should be $>0.5)$
1.5 in our example is B value
1.2 in our example is A value so general equation would be $\mathrm{Y}=\mathrm{Bx}-\mathrm{A}$
5. then you should calculate IC (inhibition concentration)
$\mathrm{IC} / \mathrm{LC}_{50}=((\log \mathrm{P} / 1-\mathrm{P})-\mathrm{A}) / \mathrm{B}$
P for IC/LC $50=0.5$
So after simplification
$\log \left(\mathrm{IC} / \mathrm{LC}_{50}\right)=-(\mathrm{A}) / \mathrm{B}$
you could also calculate IC_{20} it depends on your results for $\mathrm{IC}_{20} \mathrm{P}=0.2$
the results are in the last two lines in the table 2 in the excel example, finally you calculate IC/LC 50 or IC/LC 20 not $\log \mathrm{IC} / \mathrm{LC}{ }_{50}$ or $\log \mathrm{IC} / \mathrm{LC}_{20}$ (last line of table 2)
You should calculate IC/LC separately for length of shoot, root, fresh biomass
good luck !!!!
Example:
Table

control	0,31	0,62	1,25	2,5	5	10
10	9	7	5	3	2	0
10	9	7	5	3	2	0
	0,9	0,7	0,5	0,3	0,2	0

$\log C$	Logits
	Rejected
	1 value (R)

$0,70 \quad 0,60205999$
$0,40 \quad 0,36797679$
$0,10 \quad 0$
-0,21 0,36797679
$-0,51 \quad 0,95424251$

Results $\mathrm{y}=\mathrm{Bx}-\mathrm{a}$

- 0,1921/-1,2741

$\log c$	0,15077309
LC 50	1,41505427

2 REED METHOD

Table 1. The example of results for the calculation of LC_{50} by the Reed method.

Concentration$\mathrm{mg} / \mathrm{dm}^{3}$	Number of animals		Number of animals after cumulation			$\begin{gathered} \text { Percentage of } \\ \text { mortality } \\ \mathrm{P}=\mathrm{m} \cdot 100 / \mathrm{b} \\ \hline \end{gathered}$
	dead	alive	dead	alive	studied	
1.0	2	8	2	10	12	16.6
2.0	8	2	10	2	12	83.33
4.0	10	0	20	0	20	100

Calculation of $\mathrm{LC}_{50}: \log \mathrm{LC}_{50}=\log \mathrm{x}+\mathrm{k} \cdot \log \mathrm{i}$
$\mathrm{k}=(50-\mathrm{P} 1) /(\mathrm{P} 2-\mathrm{P} 1)$
x - concentration causing the nearest 50% of mortality
i - quotient of geometric progression (1.1 ... 2.0)
k -coefficient
P1 -cumulative \% of mortality lower than 50\%
P 2 - cumulative \% of mortality higher than 50%

