1.LOGIT METHOD

To calculate fractions: (table 1 in excel example) Number of all living specimens or total fresh biomass, length of root, shoot in the control divide per your result For example: Average number of shoot length =0.85, in the control =8.5 (for ex. for concentration 50%) Fraction (F)= 0.85/8.5 if the result is more than 1 you should do additionally subtraction like this: (1 - your)result) 2. To calculate logit (Y): y=log(F/1-F)F= fraction (table 2 in excel example) You should also calculate log from concentrations (log C) 3 Then you make a graph (chart) Axis $X = \log c$ Axis $Y = \log (F/1-F)$ 4. You should add trend line and regression formula/ equation (double click on trend line) It should be like this : y=1.5x-1.2 $R^2=0.87$ (R should be > 0.5) 1.5 in our example is B value 1.2 in our example is A value so general equation would be Y=Bx-A 5. then you should calculate IC (inhibition concentration) $IC/LC_{50} = ((log P/1-P)-A)/B$ P for IC/LC $_{50} = 0.5$ So after simplification $\log (IC/LC_{50}) = -(A)/B$

you could also calculate IC_{20} it depends on your results for IC $_{20}$ P= 0.2

the results are in the last two lines in the table 2 in the excel example, finally you calculate IC/LC $_{50}$ or IC/LC $_{20}$ not log IC/LC $_{50}$ or log IC/LC $_{20}$ (last line of table 2) You should calculate IC/LC separately for length of shoot, root, fresh biomass good luck !!!!

Example:

Table

control	0,31	0,62	1,25	2,5	5	10
10	9	7	5	3	2	0
10	9	7	5	3	2	0
	0,9	0,7	0,5	0,3	0,2	0

LogC Logits Rejected 1 value (R)

	-
0,70	0,60205999
	-
0,40	0,36797679
0,10	0
-0,21	0,36797679
-0,51	0,95424251

Results y = Bx- a - 0.1921/-1.2741

- 0,1921/-1,2/41		
log c	0,15077309	
LC 50	1,41505427	

2 REED METHOD

Table 1. The example of results for the calculation of LC_{50} by the Reed method.

Concentration	Number of animals		Number of animals after cumulation			Percentage of mortality
mg/dm ³	dead	alive	dead	alive	studied	P=m•100/b
1.0	2	8	2	10	12	16.6
2.0	8	2	10	2	12	83.33
4.0	10	0	20	0	20	100

Calculation of LC_{50} : log $LC_{50} = \log x + k \cdot \log i k=(50-P1)/(P2-P1)$

- x concentration causing the nearest 50% of mortality
- i quotient of geometric progression (1.1 ... 2.0)
- k –coefficient
- P1 –cumulative % of mortality lower than 50%

P2 - cumulative % of mortality higher than 50%