Politechnika Wrocławska

Fundamentals of engineering drawing

dr inż. Stanisław Frąckowiak

Parallel orthogonal projection according to Monge's method

Let's assume:
x and y horizontal projection plane $\pi 1$ x and z vertical projection plane $\pi 2$ y and z side projection plane $\pi 3$

Parallel orthogonal projection according to Monge's method

The projecting rays form parallel beams that pass through the points $\mathrm{A}, \mathrm{B}, \mathrm{C} \ldots$ and pierce successively the projection planes $\pi 1, \pi 2, \pi 3$ $\pi 1$ - projection direction k1 || to the z -axis (') $\pi 2$ - projection direction k2 || to y -axis (") $\pi 3$ - projection direction k3 || to the x-axis ("')

Parallel orthogonal projection according to Monge's method

Each pair of planes among m1, m2, m3 intersect at right angles along the axes, called projection axes:

$$
\begin{aligned}
& \pi_{1} \cap \pi_{2} \rightarrow x \\
& \pi_{1} \cap \pi_{3} \rightarrow y \\
& \pi_{2} \cap \pi_{3} \rightarrow z
\end{aligned}
$$

Parallel orthogonal projection according to Monge's method

- The planes $\pi 1, \pi 2, \pi 3$ divide space into eight areas
- Let's stick to area „!"

Parallel orthogonal projection according to Monge's method

Monge's method consists in projecting the elements of space onto three mutually perpendicular projection planes, assuming a perpendicular projection direction

Parallel orthogonal projection according to Monge's method

The plane of the drawing as a result of unifying viewports is a plane $\boldsymbol{\Pi}_{\mathbf{2}}$

The image of a point in Monge projections

Guiding the projecting rays:
$A A^{\prime}=h$, height of point A relative to $\pi 1$
$A A^{\prime \prime}=\mathrm{g}$, depth of point A relative to $\pi 2$
$A A ">=s$, width of point A relative to $m 3$

The image of a point in Monge projections

- We consider the dimensional number of the height (h) to be positive when the point is located above the horizontal viewport
- We consider the depth dimensional number (g) to be positive when the point is in front of the vertical viewport

Specific point locations

height $\mathrm{h}=0$
Point A lies on m1
depth $\mathrm{g}=0$
Point A lies on $\pi 2$

width $\mathrm{s}=0$
Point A lies on $\pi 3$

The image of a straight line in Monge projections

- We choose two points A and B in space that uniquely determine the line a.
- The projections of these points determine the projections of the line a

The image of a straight line in Monge projections

- Line a and in any position

Axonometry (dimetry)

Parallel orthogonal projection (Monge method)

Plane in Monge projections

- The plane in space is determined by the basic elements:
- 3 points not on one straight line ($\mathrm{A}, \mathrm{B}, \mathrm{C}$)
- line and a point not on this line (a, A)
- two intersecting lines (a, b)
- two parallel lines (a, b)

Traces of lines and planes

- In Monge's projections, due to the clarity of information transfer, we present lines and planes in the form of traces.
- Traces are points of projection plane piercing (through a line or a plane)

Traces of line

- trace of the horizontal straight line (a') - piercing point $\pi 1=\mathrm{Ha}$
- trace of the straight line (a") - piercing point $\pi 2=\mathrm{Va}$
- trace of a straight line (a'") - piercing point $\pi 2=K a$

Construction of traces of a straight line in a particular position

- the line a' intersects the x-axis as the horizontal projection of m 2 at the point Va ((the horizontal projection of the vertical trace)

Improper items

- Cases when:
- straight lines are parallel
- the planes are parallel
- the line and the plane are parallel

Improper items

- Then we are talking about improper elements not taken into account by Euclidean geometry, and introduced by projective geometry.
- Inappropriate elements were introduced for the purposes of descriptive geometry to enable the preservation of spatial problem solving schemes
- We assume that mutually parallel elements are "almost parallel", i.e. that they intersect at a point that is infinitely far away
- line a" intersects the x -axis as the vertical projection of the viewport m1 at the improper point $\mathrm{Ha}{ }^{\circ} \infty$
- The point $\mathrm{Ha}{ }^{\infty} \infty$ lies "infinitely far" on the direction of line a", will intersect the horizontal projection of line a (a') at the point "infinitely far" Ha' ${ }^{\prime}=$ Наळ

Example

- $\mathrm{H}_{\mathrm{a}}, \mathrm{V}_{\mathrm{a}}=$?

Example - view in axonometry

Example

- $\mathrm{H}_{\mathrm{a}}, \mathrm{V}_{\mathrm{a}}=$?

Example

- $\mathrm{H}_{\mathrm{a}}, \mathrm{V}_{\mathrm{a}}=$?

26

Traces of the plane

- Let's take three points X, Y, Z defining an arbitrary plane on the axes x, y, z of the reference system. The pairs of points X and Y, X and Z, Y and Z belong simultaneously to the plane a and subsequent projection planes - thus determining the traces of the plane a in the proj. planes

Traces of the plane

- horizontal trace of the plane - straight line - intersection of the planes a and $\pi 1=h a$
- vertical trace of the plane - straight line - common part of the plane α and $\pi 2=v a$
- trace of the plane - straight line - common part of the plane a and $\pi 3=k a$

Politechnika Wrocławska
punkty węzłowe

Determination of traces of a plane defined by points and lines

- "If the line a belongs to the plane a defined by traces, then the traces of this line (points) lie on the corresponding traces of the plane (lines),,
- Knowing the traces of lines belonging to the plane a, we can unambiguously determine the traces of this plane

Politechnika Wrocławska

Example

$$
\mathbf{h}_{\alpha}, \mathbf{v}_{\alpha}=?
$$

Politechnika Wrocławska

Example

$$
\mathbf{h}_{\alpha}, \mathbf{v}_{\alpha}=?
$$

Associated elements

- Common edge (intersection) of two planes ($\alpha \cap B=k$)
- Piercing point of a straight line ($a \cap a=P$)

Common edge of two planes

- The horizontal traces ha and hB of the planes intersect at the point Hk
- The vertical traces va and vB of the planes intersect at the point Vk

Common edge of two planes

- The points Hk and Vk determine the intersection of the planes - the (straight) edge \mathbf{k} given by projections \mathbf{k}^{\prime} and $\mathbf{k}^{\prime \prime}$

Common edge of two planes

To specify edge k in projections:

- define the horizontal and vertical projection of the Hk point (horizontal trace of the intersection edge)
- define the horizontal and vertical projection of the point Vk (vertical trace of the intersection edge)

Example

$k^{\prime}, k^{\prime \prime}=$?

Example

$$
k^{\prime \prime}
$$

$k^{\prime}, k^{\prime \prime}=$?

Example

$k^{\prime}, k^{\prime \prime}=$?

Example

Piercing point of a straight line through a plane

- Piercing point ($\mathrm{a} \cap \mathrm{a}=\mathrm{P}$)

Piercing point of a straight line through a plane

The procedure for searching for the piercing point of a straight line: we determine the auxiliary plane ε passing through the line a we find the edge (k) common to the planes a and ε ($\mathrm{a} \cap \varepsilon=\mathrm{k}$)

Since line a lies on plane ε and line k lies on plane, so these lines will intersect at point P, which is the intersection point of plane a

Example

Example

$\mathbf{P}^{\prime}, \mathbf{P}{ }^{\prime}=$?

Homework

2/1

- Find traces of line $a, H a, V a=$?
- Find traces of plane $\alpha, h_{\alpha}, v_{\alpha}=$?

2/2

- Find intersection between planes α and β
- Find piercing point of plane α by line a

