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Major reliability indices used in 

environmental engineering

• For quantitative reliability assessment of 

systems reliability indices were introduced

• Reliability indices can be expressed in form 

of functional or numerical characteristics 

which include properties of the system and 

its elements as well as random processes 

connected with functioning of the system



Renewable and non-renewable units

• Smallest piece of the system (indivisible) is 

an units (elements)

• We can define non-renewable and 

renewable units

• We will discuss these two types of units 

separately



Non-renewable units

• Non-renewable units cannot be repaired 

(or the repair is not cost-effective)

(t)

failure-free

operation

failure

Non-renewable unit work scheme



Non-renewable units – probability of 

failure-free operation

• Practical measure for assessment of non-

renewable units operation is a probability

(R (t)) that the unit will be failure-free at 

the beginning of operation (t = 0) and 

specific period of time (0, t]:

T – continuous random variable describing the 

operation time (up to the moment of failure) 

R t( ) = P T � t( )



Non-renewable units

• Probability of failure (U(t)) is opposite to 

probability of failure-free operation (R(t)):

• For time range from t ≥ 0 it is also 

distribution (F(t)) of a random variable T 

describing failure-free operation time of the 

unit:

U(t) = 1− R(t) = P(T < t)

F(t) = U(t) = P(T < t)



Non-renewable units (contd)

If functions R(t) and F(t) are continuous we can 

express them in form of distribution density 

function f(τ):

Transforming further, we obtain the 

probability density of random variable T:

F(t) = f (τ )dτ
0

t

�   and  R(t) = f (τ )dτ
t

+�

�

f (t) = dF(t)

dt
= − dR(t)

dt



Non-renewable units – Graphs of R(t), 

F(t) and f(t) functions



Failure intensity of non-renewable 

units

Failure intensity (rate) of non-renewable 

units:

after transformation, we obtain:

this leads to the general Wiener equation –

the general equation for reliability:

λ(t) = f (t)

R(t)

λ(t) = − 1

R(t)

dR(t)

dt
= − d

dt
ln R(t)[ ]

R(t) = exp− λ(τ )dτ
0

t

�
for any continuous failure intensity λ(t)



Non-renewable units – numerical 

characteristics of reliability

• Apart from functional characteristics (R(t), 

F(t), f(t) and λ(t)) we can use numerical 

characteristics

• For non-renewable units we use mean time 

to failure (MTTF) - Tu = E(T)

• Mean time to failure is a expected value (E) 

of random variable T: Tu = E(T) and (see R(t) 

function chart above):

Tu = R(τ )dτ
0

�

�



Typical run of a failure intensity function 

λ(t) for a technical object (Bathtub curve)

I

II

III t

λ(t)

I – period of running-in, high failure intensity but quickly decreasing 
(elimination manufacturing defects)
II – period of normal (regular) operation of the system – we can 
assume failure intensity to be constant
III – period of system ageing, failure intensity is increasing rapidly



Operation period

In most analyses only period II – the normal 
operation time is considered – for this period 
failure intensity is constant (when considered 
in longer operation time) then:

For such assumption, random variable 
describing the time of failure-free operation 
period (T) has an exponential character 
(distribution)

λ(t) = λ = const



Operation period (cont.)

• The general equations can be simplified to 
the following forms:

For exponential distribution failure intensity 
– λ can be interpreted as a mean number of 
failures per unit of time

R(t) = e−λt = exp−λ ⋅ t
U(t) = F(t) = 1− e−λt = 1− exp− λ ⋅ t

f (t) = λ ⋅e−λt = 1− exp− λ ⋅ t

Tu = 1

λ



“No memory condition”

• For exponential distribution the “no 

memory condition” is fulfilled that can be 

put down using conditional probability:

When we transform above with:

we obtain: 

R(t + ∆t t) = R(∆t)

R(t) = e−λt = exp−λ ⋅ t

R(t + ∆t t) = R(t + ∆t)

R(t)
= exp− λ(t + ∆t)

exp− λ ⋅ t
= exp− λ ⋅ ∆t = R(∆t)



“No memory condition”

• In the context of the last equation “no memory” 
means that the probability of the unit failure in 
the period of time (Δt) is dependent only on the 
duration of the period and not on how much 
time this unit worked BEFORE

• Unit which time of failure-free operation can be 
described by exponential distribution in every 
instant of its operation can be treated “as 
new”

• The exponential distribution and “no 
memory condition” assumptions and 
characteristics can be applied to both non-
renewable as well as renewable units



Example 1

Failure intensity of the (non-renewable) 
chlorinator is equal λ = 1e-6 1/h. Calculate the 
probability of chlorinator failure-free operation 
during time period of t = 1e5 hours. Assume 
exponential distribution.



Answer 1

• The failure-free operation probability is 

expressed by the function in form of:

For data given in the example we obtain 

reliability:

R(t) = exp− λ ⋅ t

R(t) = exp−1e−6 1/ h⋅1e4 h = exp− 0.01 ≅ 0.99



Example 2

• In deep well electronic controller for “dry-

run” protection of borehole pump was 

installed. Manufacturer determined its 

failure-free operation time to 5 years and set 

2 year warranty. Assuming that 

controller is non-renewable unit,

calculate probability of 

failure-free operation during the

2 years of warranty



Answer 2

• Assuming that distribution of controllers 

failures is exponential and calculating value 

failure intensity as a reciprocal of mean 

uptime Tu

λ = 1

Tu

= 1

5 years
= 0.20 1/ year

R(t = 2 years) = exp− 0.20 ⋅2 years = exp− 0.4 ≅ 0.67



Example 3

• Calculate probability that non-renewable 

unit will be failure-free during time period of 

(0, Tu].



Answer 3

Probability that unit will be failure-free until t can 
be expressed by equation:

hence for t = Tu we can write:

In practice it means that approx. 37% of non-
renewable units life will be longer then mean 
failure-free time Tu while 63% of them will fail 
before.

R(t) = e−λt

R(Tu) = e−λTu = e−1 = 0.367879



Question 4

• Calculate probability of failure-free operation 

for R(t2) = 10 000 hours and mean failure-

free time Tu for non-renewable unit having: 
– t1 = 5 000

– R(t1) = 0.9875



Answer 4

We can start with finding failure intensity 

using known relation for exponential 

distribution:

we take a logarithm for both sides of the 

equation:

e−λt1 = 0.9875

−λ ⋅ t1 = ln 0.9875

−λ ⋅ t1 = −0.012578

λ = 0.012578

t1
= 0.012578

5000
= 2.5e−6  1/h



Answer 4 (cont.)

For known λ = 2.5e-6 we can now calculate 

reliability of the unit:

The MTTF is then:

R(t2 ) = e−λt2 = e−2.5e−6⋅10000 = 0.975310

Tu = 1

λ
= 1

2.5e−6
= 400000 hours



Exercise 5

• From large number of non-renewable units 

(n = 5000) after time t = 1000 hours 75 units 

failed. Calculate MTTF



Answer 5

For a time t empirical reliability of the units is 

equal to:

and can be expressed in exponential form: 

After some modifications we obtain failure 

intensity:

thus MTTF is equal: 

R(t) = 1425 /1500 = 0.95

R(t) = e−λt

λ = ln R(t)

t
= ln 0.95

1000
= 5.13e−5  1/h

Tu = 1

λ
= 1

5.13e−5
≅ 19500hours



Exercise 6

MTTF of non-renewable units is equal Tu = 

4000 hours. Calculate number (share) of 

elements which will fail in consecutive periods 

of time Δt = 2000 hours.



Answer 6

We can reformulate this assignment to find the 
decrease in reliability for following periods Δt of 
time.
We start with finding the failure intensity which is 
equal:

The drop in reliability for the first period of time 
Δt will be:

so 39.3 % of elements will fail after 2000 hours

λ = 1

Tu

= 1

4000
= 2.5e−4  1/h

R(I ) = R(t = 0) − R(t = ∆t) = e0 − e−λ∆t = 1− 0.606531 = 0.393469



Answer 6 (cont.)

Drop in reliability in second period [Δt, 2Δt] 
will be:

and third:

Summing up: after three consecutive periods of 
2000 hours 39.4%, 23.9% and 14.5% of units 
will fail.

R(II ) = R(t = ∆t) − R(t = 2∆t) = e−λ∆t − e−λ 2∆t = 0.606531− 0.367879 = 0.238652

R(III ) = R(t = 2∆t) − R(t = 3∆t) = e−λ 2∆t − e−λ 3∆t = 0.367879 − 0.223130 = 0.144749



Renewable units

• Renewable units can be repaired (or renewed) after they fail
• After renewable units is repaired it is included in the system and 

treated “as new”
• In longer period of operation time there maybe multiple cycles of 

failure and failure-free modes
• There are two types of renewal:

– instant renewal (the Tr is negligible)
– real renewal time (Tr > 0)

(t)

failure-free

operation

failure

Renewable unit work scheme – real renewal time

tp1 tp2

tr1 tr2

(t)

failure-free

operation

failure

Renewable unit work scheme 

– instant renewal time

tp1 tp2

tr1 = 0 tr2 = 0



Renewable units

• Operation of renewable units can be assessed by 
analysis of time between failures (e.g. MTBF) 
or analysis of number of events in given time 
period - event is either the occurrence of 
failure or the end of repair

• Assumptions:
– repair of an unit is complete (“as new”)
– units can be replaced with new one
– units are repaired just after they breakdown (time to 

repair = 0)
– distribution of both time between failures and time 

of failure is exponential
– only so called normal operation period is considered 

(period II)



Time between failures analyses

• When the time between failures is 
considered in analyses we can distinguish 
two random variables T’up – time when unit 
is operating and T’down – time when unit is 
damaged and not operational

• The expected values (E) of this variables are 
mean time between failures (MTBF - Tup) 
and mean time of failure (Tdown):

E(T’up) = Tup and    E(T’down) = Tdown



Mean working (up time) - Tu

• Mean time between failures (Tup) – time 

period of up time between failures. It is an 

expected value (E) of random variable Tu

which describes the uptime of the system (or 

its elements) between two consecutive 

failures:

Applied for operating (real) data yields:

Tup = E Tu( ) = t f
0

�

� t( )dt

Tup = 1

k + z
ti−up

i=1

k

� + z⋅ t
�

�ç
ö

�÷
, d

E(Tu) 
t – observation time

ti-up –

k – number of failing objects periods

z – number of periods for working (not failing) objects

f(t) –



Mean time to repair (recovery) - Tdown

• Mean time to repair is a expected value of 

random variable Tr which describes repair 

time:

Applied for operating (real) data yields:

Tdown = E Tdown( ) = t fn(t)dt
0

�

�

Tdown = 1

no

ti−down, d
i=1

no

�
no – number of repairs in examined 

period

ti-down – duration of i-repair



Number of events analyses

• When we observe number of events in given 
time period we are analyzing series of for events 
(start of down time and end of repair) so called 
streams of failures (ω) and streams of 
repairs (μ)

• Assuming exponential distribution of random 
variable Tup and Tdown the parameters ω and μ 
are also constant and the stream of failures (ω) 
can be substitute by parameter λ and it is now 
called the failure intensity (rate):

ω(t) = ω = λ



Failure rate of renewable units

• Failure rate λ is describing the mean number of 
downtime per unit time:

E(L) = λ
where L is a random variable describing the number of 
downtime per unit time
• For exponential distribution we can write by analogy:

• failure rate λ is at the same time parameter at 
discrete Poisson distribution which is by expression 
E(L) = λ describing number of failures per unit time

Tup = 1

λ
= MTBF Tdown = 1

µ



Failure intensity - λ

• Failure intensity can be obtained from eq.:

Applied for operating (real) data yields:

λ t( ) =
dE Tup( )

dt

λ t( ) = 1

Tup

, 1 / d

λ t( ) =
n t, t + ∆t( )

N ⋅ ∆t

n(t,t+Δt) – number of all failures in examined 

period

N – number of examined objects (or for linear 

objects = length)

Δt – observation period



Repair intensity - μ 

• Repair (recovery intensity) - μ is defining 

the number of failures repaired in a time 

unit:

µ t( ) =
n t,t + ∆t( )
n t( ) ⋅ ∆t

µ = 1

Tdown

, 1 / d

n(t,t+Δt) – number of objects which recovery ended 

in time interval (t, t+Δt) 

n(t) – number of objects, which recovery ended at t

Δt – observation period



Renewable units

• For renewable units Tup and Tdown are single 

measure of reliability

• We can use complex measure which 

incorporates all single measures

• In practice we use:
– Standby index (stationary and non-stationary)

– Standstill index

– Operational standby index



Standby index - Ks

• (Non-stationary) Standby index Ks(t) describes a 

probability that system will be in operation at a 

given time (t). With increasing operating time, value 

of standby index approaches the boundary value -

stationary standby index Ks

Kg t( ) =
µ + λ exp − µ + λ( ) ⋅ téë ��

µ + λ

Kg = lim
t→�

K t( ) = µ
µ + λ

=
Tup

Tup + Tdown

=

Tup

Tdown

Tup

Tdown

+1



Standby index - Ks

• Standby index is a major complex measure 

for renewable units

• Stationary standby index is interpreted a 

probability that in any moment (but long 

enough) from the beginning of operation, 

unit will be working – commonly we called it 

reliability



Standstill (parking) index - Kp

• Standstill or parking index (Kp) is 

complementing the standby index (Ks):

K p = 1− Ks = Tdown

Tup + Tdown



Operational standby index - Ko

• Operational standby index is another 
complex measure used for describing 
reliability of the systems:

• Operational standby index is interpreted as 
a probability that in any moment (but long 
enough) from the beginning of operation, 
unit will be fully operable and that it will 
sustain this state for a time period of Δt

Ko(∆t) = KsR(∆t)



Binomial distribution 

• Number of failures of renewable units can be 
described by discrete dimetric Bernoulli 
distribution or discrete Poisson 
distribution. Binomial distribution in the 
form of:

describes the probability of obtaining k –
successes in n – independent trials, whereby 
the probability of success in single trial is p

P k,n, p( ) = n

k

�

�ç
ö

�÷
pk

1− p( )n−k



Binomial distribution – interpratation

in reliability

• For independent operation of n – units and 

assuming probability p of single unit, the 

equation for binomial distribution allow for 

calculation of probability of simultaneous 

occurrence of k = 0, 1, 2,…, n failures

• Binomial or Bernoulli distribution is used for 

small number of n (failures)



Poisson distribution

• Poisson distribution is a limiting case of 

binomial distribution

• For large number of independent trials (n -> 

∞), probability of a success is small (p -> ∞) 

and product of n and p is constant n x p = λ

(failure intensity). The limiting probability of 

occurrence of k failures is given by the 

equation:

P(k) = λ k

k!
e−λ



Poisson distribution

• In practice equation is used when p < 0.1 and n 
> 50

• It may be used for n > 10 but the final result may 
deviate from result obtained from binomial 
distribution

• In case of considering N simultaneously working  
uniform units (assuming instant renewal) 
instead of λ we use failure rate of group of units: 
Λ = N x λ

• When operation of a single unit at any time t is 
considered the failure intensity in the following 
form must be used Λ = λ x t



Exercise 1

• An unit is about to be put to operation. Unit is 

characterized by MTBF = 5000 h and Tdown = 

16 hours. Determine time needed for standby 

index Ks to reach constant value.



Answer 1

We must calculate time when value of non-stationary standby 

index Ks(t) differ by small value ε > 0 from stationary standby 

index Ks.

We can find Ks from: 

Let’s assume error ε = 0.0005, so we need to find time t when 

Ks(t) = Ks + ε = 0.99731. Transforming equation for non-

stationary standby index:

Ks =
Tup

Tup + Tdown

= 0.996810

Ks(t) = µ + λ ⋅exp− (µ + λ)t

µ + λ
= 0.996810

exp− (λ + µ)t = 1

λ
Ks + ε( ) µ + λ( ) − µéë ��



Answer 1 cont.

After taking a logarithm and transform:

Failure and repair intensity can be calculated 

from:

Then finally time:

t = − 1

λ + µ
ln

1

λ
Ks + ε( ) µ + λ( ) − µéë ��

λ = 1

Tup

= 1

5000
= 2e−4 1/ h

µ = 1

Tdown

= 1

16
= 6.25e−2 1/ h

t = − 1

2e−4 + 6.25e−2
ln

1

2e−4
0.99681+ 0.0005( ) 2e−4 + 6.25e−2( ) − 6.25e−2é

ë
�
�= 29.56h



Exercise 2

Assess which of two segments of pipeline have 
higher reliability:
- A – pipe made of steel of length L(A) = 10 km
- B – pipe made of cast iron L(B) = 2 km
Values of unit failure intensities for these 
pipelines are:
- λo(A) = 0.005 1/km a
- λo(B) = 0.05 1/km a
Pipelines are laid in different ground conditions 
and have different mean time to failure Tdown(A) = 
15 hours and Tdown(B) = 10 hours.



Answer 2

For linear units failure intensity can be obtain 

from: 

Failure intensities for pipelines A and B are:

MTBFs are:

λ = λoL

λ(A) = 0.005 ⋅10 = 0.051/ annum

λ(B) = 0.05 ⋅2 = 0.10 1/ annum

Tup(A) = 1

λ
= 1

0.05
= 20 years= 175200 hours

Tup(B) = 1

λ
= 1

0.1
= 10 years = 87600 hours



Answer 2 cont.

Reliability of pipelines A and B are:

Ks =
Tup

Tup + Tdown

Ks(A) = 0.999914

Ks(B) = 0.999886



Exercise 3

A water treatment plant (as an undividable 
unit) can treat water with typical train of 
processes for normal quality of raw water. In 
case of unusual fluctuations of quality WTP can 
treat water using ancillary train of processes. 
MTBF and MTTF of the ancillary train: Tup = 
8000 hours and Tdown = 12 hours.
Find probability that WTP will be able to treat 
water during extremely low water quality for 
Δt = 2 days.



Answer 3

To solve the problem we need to find the value of operational 

standby index Ko. 

Because the occurrence of extreme conditions (poor water 

quality) is random, so probability that alternative train will be 

ready in any moment can be found from equation:

Whereas the probability of continuous, failure-free operation 

during time Δt is expressed by equation:

Failure intensity: λ = 1/Tup

Ko(∆t) = KsR(∆t)

Ks =
Tup

Tup + Tdown

= 0.998502

R(t) = e−λt



Answer 3 cont.

The probability of failure-free operation during 

time period of Δt is equal:

Hence the probability that WTP will be able to 

operate during Δt:

R(∆t = 2 days) = 0.994018

Ko(∆t) = K ⋅ R(∆t) = 0.992529



Exercise 4

Ground water intake is composed of 5 

independent deep wells. Reliability of each 

deep well is described by stationary standby 

index Ks = 0.98. What is the probability that in 

any moment 4 deep wells will be operable at 

the same time.



Answer 4

We are looking for probability that in any 

moment number of non-working deep wells 

will be equal to 0 or 1. Assuming to Bernoulli 

equation the probability of success (in this case 

– failure) referring to any moment of time p = 1 

– Ks = 0.02 we obtain:

P(k = 0) = P(k = 0,n = 5, p) = 5

0

�

�ç
ö

�÷
p0 (1− p)5 = Ks

5 = 0.903921

P(k = 1) = P(k = 1,n = 5, p) = 5

1

�

�ç
ö

�÷
p1(1− p)4 = 5(1− Ks)Ks

4 = 0.092237



Answer 4 cont.

The overall probability is equal:

P(k �1) = P(k = 0) + P(k = 1) = 0.996158



Exercise 5

In 10 story block of there are 4 flats on each 

floor. Find probability that during t = 1 year, 

every single valve (one per apartment) will be 

operable. Assume failure intensity of the valve 

λ(valve) = 0.08 year-1



Answer 5

The probability of failure-free operation of the 

valve during time t is equal:

Thus the probability of valve failure in this 

period is equal:

R(t) = e−λ (valve)t

F(t) = 1− R(t) = p = 0.076884



Answer 5 cont.

Total number of valves for a block is n = 10 x 4 

= 40 pieces. For this case we will use Poisson 

distribution. The failure rate of valves in all 

apartments is equal:

and probability of failure-free run of all valves 

(or occurrence of k = 0):

P(k = 0) = Λk

k!
e−Λ = e−Λ = 0.040762

Λ = n⋅λ(valve) = 3.2 year −1



Exercise 6

Ground water intake is composed of five dug 

wells. The MTBF = 8 years (Tup) and MTTF = 2 

days (Tdown) were determined upon 

operational data. To achieve full capacity 

intake must work with three active wells. Find 

reliability of intake defined by probability that 

it will sustain maximum capacity at any time.



Answer 6

For small number of uniform elements (n = 5) 

we can use binomial distribution. For number 

of successes (in this case well failure) k = 0, 1 

and 2 (thus there will be still 3 wells left 

working) and probability p of success (failure 

of one well) at any time (where p = Kp –

standstill index):

P k,n, p( ) = n

k

�

�ç
ö

�÷
pk 1− p( )n−k



Answer 6 cont.

We start with finding standstill index Kp:

Next we can find probability of occurrence of  

each operating case: failure-free run of all (k = 

0), failure of one (k = 1) and two wells (k = 2)

Kp = Tdown

Tup + Tdown

= 2days

2920days+ 2d
≅ 0.00068



Answer 6 cont.

P(k = 0) = P(k = 0,n = 5, p = 0.00068) = 5

0

�

�ç
ö

�÷
p0 (1− p)5 =

= 1− 0.00068( )5 ≅ 0.006604621

P(k = 1) = P(k = 1, n = 5, p = 0.00068) = 5

1

�

�ç
ö

�÷
p1(1− p)4 =

= 5 ⋅0.00068 1− 0.00068( )4 = 0.003390761

P(k = 2) = P(k = 2,n = 5, p = 0.00068) = 5

2

�

�ç
ö

�÷
p2 (1− p)3 =

= 10 ⋅0.000682 1− 0.00068( )3 = 0.000004614



Answer 6 cont.

The overall probability will include all analyzed 

cases, when capacity will be above required:

P(k � 2) = P(k = 0) + P(k = 1) + P(k = 3) = 0.99999996



Reliability schemes



Exercise 1

In WTP there are 6 (same) rapid filters. The 

maximum capacity of the filter is equal Q(F) = 

20% Qn (Qn – nominal capacity of the WTP). 

What is reliability scheme of the filters?



Answer 1

The ratio n = Qn/Q(F) = 5 is a number of active 

(indispensible) filters. Required capacity will 

be sustained by 5 active – so the structure is 5 

from 6. 



Exercise 2

In pumping station there are 4 pumps with 
capacities equal: Q1 = Q2 = 1/3Qn (nominal 
capacity of the pumping station), Q3 = Q4 = 
2/3Qn. The pumps are connected in parallel 
(pipes and fixtures can be omitted in this 
example). Find reliability schemes for the 
required capacity (Qr) equal:
a) Qr = Qn

b) Qr = 2/3Qn

c) Qr = Qn + 1/3Qn (for fire fighting)



Answer 2

Reliability scheme depends on the actual water 

demand. In first case (a) the nominal capacity 

can be obtained by activating one 1/3Qn pump 

and one 2/3Qn pump:



Exercise 3

For pumping station (technical schemes below) 

find reliability schemes for three different 

cases (pipelines can be omitted):

a) 1 from 3

b) 2 from 3

c) 3 from 3

pump valve check valve pipeline



Answer 3

To obtain clear schemes and to facilitate analyses, 
pumping station elements are grouped into blocks (A, B, 
C).
Only a fatal failure of valve (V) and check valve (CV) will 
be considered. Then elements in serial and connected 
with other paths (1, 2, 3) will not be blocked 



Answer 3 cont.

We will list failure-free paths (of flow). Case 1 

from 3 means that there must be one pump 

working. Thus number of failure-free paths are 

equal                they are D1, D2 and D3. The 

elements and blocks are presented in the table:

3

1

�

�ç
ö

�÷
= 3

Path Blocks and elements



Answer 3 cont. (1 from 3)

For “1 from 3” case, pumping station will be 

working when one of the blocks A, B and C will 

be working. Elements no 1 and 4 are present in 

all paths (so they must be put in serial). 

Elements 2 and 3 are on two paths D2 and D3. 

The reliability scheme “1 from 3”



Answer 3 cont. (2 from 3)

For “2 from 3” case, number of paths

D4, D5 and D6. 

3

2

�

�ç
ö

�÷
= 3



Answer 3 cont. (3 from 3)

Case 3 from 3 – only one path D7 is possible 

because all pumps must be working


