Subject cards

FACULTY:

MAIN FIELD OF STUDY:	ENVIRONMENTAL QUALITY MANAGEMENT	
LEVEL OF STUDY:	second-level studies	
FORM OF STUDY:	full-time studies	
IN EFFECTS SINCE ACADEMIC YEAR:	2022/2023	
LIST OF CARDS:		
Ethics of new and emerging technologies	(n/d)	2
Strategic management (n/d)		4
Engineering applications of mathematica	l statistics (n/d)	6
Environmental chemistry (n/d)		9
Environmental management (n/d)		12
Spatial planning (n/d)		14
Reliability of engineering systems (n/d)		16
Organization of construction works (n/d)		18
Building regulations (n/d)		20
Renewable energy systems (n/d)		22
Water quality management (n/d)		24
Raw materials management (n/d)		26
Water Treatment Technology (n/d)		28
Sanitary biology (n/d)		31
AutoCAD (n/d)		33
Water supply systems (n/d)		35
Biodegradable materials(n/d)		37
Wastewater Treatment Technology (n/d)		39
Solid waste management (n/d)		42
Environmental chemistry (n/d)		45
Environmental toxicology (n/d)		47
Environmental health hazards (n/d)		49
Sewage systems (n/d)		51
Diploma seminar (n/d)		54
Diploma project (Master thesis) (n/d)		56
Membrane separation processes in envir	onmental protection środowiska (n/d)	58
	s measurement (n/d)	
	t processes (n/d)	
Air pollutants and their sources (n/d)		68
Automatyka w inżynierii środowiska (n/d)	70

ENVIRONMENTAL ENGINEERING

Ethics of new and emerging technologies (n/d)

Faculty	Environmental Engineering
Name in Polish	Etyka nowych technologii
Name in English	Ethics of new and emerging technologies
Main field of study	Environmental Quality Management
Level	II .
Form	full-time
Kind of subject	University-wide
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15				
Number of hours of total student workload (CNPS)	60				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course					
Number of ECTS points	2				
including number of ECTS points for practical(P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Basic knowledge from the field of humanities and social sciences

SUBJECT OBJECTIVES

C1	Obtaining knowledge on ethical and societal implications of new and emerging technologies
C2	Learning how to use ethical argumentation and justify ethical opinions
C3	Introducing students to norms and standards of professional ethics
C4	Expounding non-technical aspects of engineering activity and elucidating the problem of social responsibility of
C4	science and technology

Relating to	Relating to knowledge:			
PEU_W01	The student obtains knowledge on ethical aspects of development and employment of new technologies in			
	society.			
PEU W02	The student obtains knowledge essential to understanding and interpreting social and philosophical aspects			
PEU_WUZ	of engineering activity			
Relating to	social competences:			
	The student is aware of the importance of non-technical aspects of engineering of a chosen specialty and			
PEU_K01	understands the consequences of engineering activity in terms of its environmental and social impact as well			
	as their responsibility for making decisions			

Form of classes lecture		Number of hours
Le1	Introduction: morality, ethics, law	2
Le2	The structure of a moral dilemma; main ethical theories	2
Le3	Engineering ethics; models of technology assessment	2
Le4	Ethics of information technologies. Case studies	2
Le5	Neuroethics: brain-machine interaction technologies. Case studies	2
Le6	Autonomous robots (roboethics); nanoethics. Case studies	2
Le7	Selected codes of engineering ethics. Case studies analyses	2
Le8	Responsibility for future generations	1
Total hours		15

TEACHING	TEACHING TOOLS USED		
N1	N1 Multimedial presentation		
N2	Informative lecture		
N3	Interactive lecture		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02, PEU_K01	Written essay prepared on the basis of the lecture and selected literature or a test written in class

PRIMARY AND SECONDARY LITERATURE

Prima	ry literature		
1	Arystoteles, Etyka nikomachejska, przeł. D. Gromska, PWN, Warszawa 1956.		
2	Bińczyk E., Technonauka w społeczeństwie ryzyka, Wyd. Naukowe UMK, Toruń 2012.		
3	Chyrowicz B., O sytuacjach bez wyjścia w etyce, Wyd. Znak, Kraków 2008.		
4	Kant I., Uzasadnienie metafizyki moralności, przeł. M. Wartenberg, Kęty 2009		
5	Małek M., Mazurek E., Serafin K. (red.), Etyka i technika. Wrocław 2014.		
6	Mill J.S., O wolności, tłum. A.Kurlandzka, Warszawa 2005.		
7	Mill J.S., Utylitaryzm, tłum. M.Ossowska, Warszawa 2005.		
8	Woleński J., Hartman J., Wiedza o etyce, Warszawa 2008		
Secon	dary literature		
1	Bińczyk E., Stępień T., Modeling Technoscience and Nanotechnology Assessment, Peter Lang Edition, Frankfurt-Wien 2014.		
2	Breazeal, C., Scassellati, B., Robot in Society: Friend or Appliance, Proc. Agents (1999): 18-26.		
3	Budinger T., Budinger M., Ethics of Emerging Technologies, Hoboken NJ 2006.		
4	Dautenhahn K., et al., What is a Robot Companion: Friend, Assistant or Butler, IROS (2005)		
5	Jaśtal J. (red.) Etyka i charakter, Kraków 2004		
6	Ossowska M., Socjologia moralności. Zarys zagadnień, PWN, Warszawa 2005.		
7	Schermer M., The Mind and the Machine. On the Conceptual and Moral Implications of Brain-Machine Interaction, Nanoethics (2009) 3: 217-230		
8	Singer P. (red.) Przewodnik po etyce, Warszawa 2000.		
9	Swierstra T., Rip A., Nano-Ethics as NEST-ethics: Patterns of Moral Argumentation About New and Emerging Science and Technologies, Nanoethics (2007) 1: 3-20.		
10	Takayama, L. et al., Beyond Dirty, Dangerous and Dull: What Everyday People Think Robots Should Do, HRI-08 (2008).		
11	Thrun S., Toward a Framework of Human-Robot Interaction, HCI-19 (2004): 9-24.		
12	Witt K. (i in.), Deep Brain Stimulation and the Search for Identity, Neuroethics (2011)		

Name and surname:	Monika Małek-Orłowska
E-mail:	monika.malek@pwr.edu.pl

Strategic management (n/d)

Faculty	Environmental Engineering
Name in Polish	Zarządzanie strategiczne
Name in English	Strategic management
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	University-wide
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30				
Number of hours of total student workload (CNPS)	90				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course					
Number of ECTS points	3				
including number of ECTS points for practical(P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,3				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 No prerequisites

SUBJECT OBJECTIVES

C1	C1 Obtaining knowledge about strategic management	
	Introduce instruments (strategies, models and methods), that support strategic management	
C3	Acquire by students skills for practice strategic management tools	

SUBJECT EDUCATIONAL EFFECTS

Relating to I	Relating to knowledge:		
PEU_W01	PEU_W01 Students know the idea of strategic management		
PEU_W02	PEU_W02 Knowledge about variety of strategies		
PEU_W03	PEU_W03 Familiarity with instruments (concepts, methods, models) of estimation a strategy		

PROGRAMME CONTENT

Form of	Form of classes lecture	
Le1	Enterprise and its market function	2
Le2	Role of strategy at management of an enterprise	2
Le3	Selected concepts of strategic management	2
Le4	Vision, mission statement and enterprise strategic aims	2
Le5	Strategic analyses of macro environment	2

Le6	Methods of predict the macro environment trends	2
Le7	Strategic analyses of sector environment	2
Le8	Analyses of organizational resources	2
Le9	Core competences strategy	2
Le10	Estimation an enterprise strategic position	2
Le11	Formulating a strategy and strategic choice	2
Le12	Models of strategic choice	2
Le13	Implementation a strategy	2
Le14	Modern management concepts and strategic management	2
Le15	General remarks and summary	2
Total hou	'S	30

TEACHING	TEACHING TOOLS USED	
N1 Multimedia performance		
N2 Reports		
N3 Selected statistical data		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
1	F1	PEU_W01, PEU_W02, PEU_W03
2	F2	PEU_W01, PEU_W02, PEU_W03
3	F3	PEU_W01, PEU_W02, PEU_W03
	P = 0.25F1 + 0.5F2 + 0.25F3	

PRIMARY AND SECONDARY LITERATURE

Prima	Primary literature		
1	Gierszewska G., Olszewska B., Skonieczny J., Zarządzanie strategiczne dla inżynierów, PWE Warszawa 2013		
2	Zarządzanie strategiczne. Systemowa koncepcja biznesu, pod red. M. Moszkowicza, PWE Warszawa 2005		
Seco	Secondary literature		
1	Obłój K., Pasja i dyscyplina strategii, Wydawnictwo Poltex 2010		
2	Krawiec F., Zarządzanie strategią firmy, Difin,		
3	Świda A., Strategic Management, Wrocław University of Technology, Wrocław 2011		
4	O strategii, Harvard Business Reviev Polska 2012		
5	Gierszewska G., Romanowska M., Analiza strategiczna?, PWE Warszawa 2009		

Name and surname:	Adam Świda
E-mail:	adam.swida@pwr.edu.pl

Engineering applications of mathematical statistics (n/d)

Faculty	Environmental Engineering
Name in Polish	Inżynierskie zastosowania matematyki statystycznej
Name in English	Engineering applications of mathematical statistics
Main field of study	Environmental Quality Management
Level	II.
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15	15			
Number of hours of total student workload (CNPS)	60	30			
Form of crediting	Crediting with grade	Crediting with grade			
For group of courses mark (X) final course					
Number of ECTS points	2	1			
including number of ECTS points for practical(P) classes		1			
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8	0.8			

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

Basic knowledge in algebra and mathematical analysis, including: vectors, matrices, solving linear systems, functions (linear, polynomial, power, exponential, logarithmic), differentiation and integration of univariate functions, which is necessary for understanding mathematical aspects of technical and engineering problems.

SUBJECT OBJECTIVES

C1	Learning the methods and tools of statistical data description		
C2	Becoming familiar with theoretical probability distribution functions		
С3	Gaining knowledge on methods of statistical inference and their application to solving engineering problems		
C4	Learning the application of methods and tools to perform statistical description of the data, in particular in the environmental context.		
C5	Learning the use of methods and tools to perform statistical inference in order to analyze the phenomena and processes which occur in the environment.		

Relating to knowledge:			
PEU_W01	To have the knowledge on the methods and tools of descriptive statistics and the way of applying them to analyze the data in the domain of environmental engineering.		
PEU W02			
PEU W03	To have the knowledge on the methods and tools of inferential statistics and the way of applying them to		
1 LO_W05	analyze the phenomena and processes which occur in the environment		
Relating to skills:			
PEU_U01	To be able to perform the statistical description of the data e.g. measurement data		

PEU_U02	To be able to select and apply the methods and tools of statistical inference for analyzing the phenomena and processes which take place in the environment		
Relating to	Relating to social competences:		
PEU_K01 Capability for creative performance			

Form of classes - lecture		Number of hours
Le1	Variables, data, methods and tools of descriptive statistics, types of varia-bles, population, sample, measures of center, measures of spread, histo-gram, box plot	2
Le2	Discrete variables and their distributions: binomial, Poisson, negative bi-nomial, multinomial; examples of their use for analyzing environmental problems	2
Le3	Continuous variables and their distributions: normal, t-Student, F Snedecore, Chi-square	2
Le4	Confidence interval and level, tolerance interval and level; examples of their engineering applications	2
Le5	Statistical inference with statistical tests: for one and two means, for one and two variances, normality tests; examples of their applications to envi-ronmental problems	2
Le6	Statistical inference with statistical tests: for one and two means, for one and two variances, normality tests; examples of their applications to envi-ronmental problems	2
Le7	Regression analysis and its engineering applications: linear and nonlinear regression, univariate and multivariate regression, model validation, pre-diction with the regression model	2
Le8	Final test	1
Total hours		15

Form of classes -classes		of			
		hours			
Cl1	Statistical description of the data on the selected parameter of the environment	2			
Cl2	Application of discrete variables distributions to solving engineering prob-lems	2			
Cl3	Confidence interval and tolerance interval applied to analyzing engi-neering problems	2			
Cl4	Statistical tests as the tools of solving problems in environmental engineering	2			
CI5	Normality tests	2			
Cl6	Analysis of variance applied to studying the change of the state of environment	2			
CI7	Defining, parameterization and validation of the regression model of the relationship between	2			
CI7	environmental parameters	2			
CI8	Final test	1			
Total hours		15			

TEACHING	TEACHING TOOLS USED	
N1	N1 Multimedia performance	
N2	Reports	
N3	Selected statistical data	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02, PEU_W03	Final test
P2	PEU_U01, PEU_U02, PEU_K01, PEU_K02	Final test

PRIMARY AND SECONDARY LITERATURE

Primary literature			
1	M. Maciejewska, Engineering Applications of Mathematical Statistics, PRINTPAP, 2011		
2	P. M. Berthouex, L. C. Brown, Statistics for Environmental Engineers, CRC Press, 2002		
3	3 B.F.J. Manly, Statistics for Environmental Science and Management, CRC Press, 2008		
4	V. Barnett, Environmental Statistics: Methods and Applications , John Wiley & Sons, 2006.		

Secondary literature				
1	1 NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 7/18/2006			

Name and surname:	Monika Maciejewska
E-mail:	monika.maciejewska@pwr.edu.pl

Environmental chemistry (n/d)

Faculty	Environmental Engineering
Name in Polish	Chemia środowiska
Name in English	Environmental chemistry
Main field of study	Environmental Quality Management
Level	II .
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		15		
Number of hours of total student workload (CNPS)	90		60		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	3		2		
including number of ECTS points for practical(P) classes			2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.3		0.8		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Knowledge in the field of inorganic and organic chemistry

SUBJECT OBJECTIVES

C1	Becoming familiar with the physical and chemical properties of water; chemical composition of natural waters and
	their contamination; water classification and water quality standards
	Becoming familiar with the physical and chemical processes which influence the content of the trace compounds in
C2	the air. Learning methods of mathematical description of the temporal and special variability of substances
	concentration in the air
62	Gaining knowledge in the types of waste, the methods for determination of physico-chemical properties of the waste
C3	and the theoretical ways for their treatment

Relating to knowledge:				
PEU_W01	W01 Student has the knowledge in the field of the physical and chemical analysis required in assessment of drinking water quality			
PEU_W02	Student understands the usefulness of physicochemical analysis in assessment of water quality			
PEU_W03	Student is familiar with basic notions: atmosphere, troposphere, trace compound, air contaminant, mass balance of the substance in the air			
PEU_W04	Student is able to describe and explain the processes which take place in the troposphere in gaseous phase			
PEU_W05	Student is able to describe and explain the processes which take place in the troposphere in liquid phase			
PEU_W06	PEU_W06 Student knows the methods of determining sieve, morphological and chemical composition of waste			
PEU_W07	Student is able to specify the parameters that determine the calorific and fertilizing properties of waste			

Relating to skills: PEU_U01 Student has the ability to analyse physical and chemical properties of water samples PEU_U02 Student has the ability of water quality assessment and its suitability for consumption PEU_U03 Student has the ability to plan the experiment, its implementation and the correct interpretation of the results PEU_U04 Student is able to apply the mathematical description of the mass-balance of species in the troposphere PEU_U05 Student is able to analyse quantitatively selected processes taking place in gas phase and liquid phase in the troposphere. PEU_U06 Student is able to predict and utilise the footprint of point emission source Relating to social competences:			
PEU_U01 Student has the ability to analyse physical and chemical properties of water samples PEU_U02 Student has the ability of water quality assessment and its suitability for consumption PEU_U03 Student has the ability to plan the experiment, its implementation and the correct interpretation of the results PEU_U04 Student is able to apply the mathematical description of the mass-balance of species in the troposphere PEU_U05 Student is able to analyse quantitatively selected processes taking place in gas phase and liquid phase in the troposphere. PEU_U06 Student is able to predict and utilise the footprint of point emission source Relating to social competences:	PEU_W08	Student knows the theoretical basis of waste treatment, can compare individual technologies	
PEU_U02 Student has the ability of water quality assessment and its suitability for consumption Student has the ability to plan the experiment, its implementation and the correct interpretation of the results PEU_U04 Student is able to apply the mathematical description of the mass-balance of species in the troposphere PEU_U05 Student is able to analyse quantitatively selected processes taking place in gas phase and liquid phase in the troposphere. PEU_U06 Student is able to predict and utilise the footprint of point emission source Relating to social competences:	Relating to s	kills:	
PEU_U03 Student has the ability to plan the experiment, its implementation and the correct interpretation of the results PEU_U04 Student is able to apply the mathematical description of the mass-balance of species in the troposphere Student is able to analyse quantitatively selected processes taking place in gas phase and liquid phase in the troposphere. PEU_U06 Student is able to predict and utilise the footprint of point emission source Relating to social competences:	PEU_U01	Student has the ability to analyse physical and chemical properties of water samples	
PEU_U04 Student is able to apply the mathematical description of the mass-balance of species in the troposphere PEU_U05 Student is able to analyse quantitatively selected processes taking place in gas phase and liquid phase in the troposphere. PEU_U06 Student is able to predict and utilise the footprint of point emission source Relating to social competences:	PEU_U02	Student has the ability of water quality assessment and its suitability for consumption	
PEU_U05 Student is able to analyse quantitatively selected processes taking place in gas phase and liquid phase in the troposphere. PEU_U06 Student is able to predict and utilise the footprint of point emission source Relating to social competences:	PEU_U03		
PEU_U05 troposphere. PEU_U06 Student is able to predict and utilise the footprint of point emission source Relating to social competences:	PEU_U04	Student is able to apply the mathematical description of the mass-balance of species in the troposphere	
Relating to social competences:	PEU_U05		
<u> </u>	PEU_U06	Student is able to predict and utilise the footprint of point emission source	
PEU_K01 Student is aware of the effects of pollution of natural waters	Relating to social competences:		
	PEU_K01	Student is aware of the effects of pollution of natural waters	
PEU_K02 Student understands the role of trace compounds in the troposphere	PEU_K02	Student understands the role of trace compounds in the troposphere	
PEU_K03 Student is aware of risks to the environment arising from incorrect waste management	PEU_K03	Student is aware of risks to the environment arising from incorrect waste management	

Form of	classes - lecture	Number of
		hours
Le1	Physical and chemical properties of water. Minerals and natural organic compounds in water	3
Le2	Classification and water quality standards	2
Le3	Physical and chemical parameters of water analysis	2
Le4	Tests for determination of organic compounds in water	2
Le5	Crediting (part I)	1
Le6	Atmosphere, air and trace compounds. Mass balance of species in air and its mathematical description	3
Le7	Chemistry of gas phase in the troposphere.	2
Le8	Chemistry of liquid phase in the troposphere.	2
Le9	Species removal from the troposphere: wet and dry deposition.	2
Le10	Crediting (part II)	1
Le11	Quantitative characteristics of waste. General chemistry: differences between chemical compounds and mixtures, methods of separating components from mixtures as a basis for sieve and morphological analyses	3
Le12	Determination and evaluation of fertilizing and calorific properties of waste	2
Le13	Organic chemistry: elements, general properties, characteristics of common compounds pointing out the connection with waste (e.g. chlorinated hydrocarbons as solvents, alkenes as raw materials for the production of polyolefins)	2
Le14	Organic chemistry: carbohydrates, fats, proteins. Decomposition under aerobic and anaerobic conditions (chemical reactions, biocatalysis, quality of end-products)	2
Le15	Crediting (part III)	1
Total ho	urs	30

		Number
Form of classes - laboratory		of
		hours
La1	Introduction; overview of the scope of the course. Analyses: alkalinity, hardness, calcium and magnesium	2
La2	Analyses: chlorides, ammonium nitrogen, nitrite nitrogen and nitrate nitrogen, sulphates and total dissolved solids	2
La3	Analyses: ferric, chemical oxygen demand (COD-Mn), manganese. Electrolyte balance. Assessment of water quality	3
La4	Temporal variability of species concentration in air as a function of the delivery and removal processes	2
La5	Quantitative analysis of photochemical cycle NO2, NO, O3	2
La6	Modelling of gas phase -liquid phase equilibrium for SO2 in the tropo-sphere	2
La7	Emission sources identification using a receptor model	2
Total hours		15

TEACHING	TEACHING TOOLS USED	
N1	Informative lecture	
N2	Problematic lecture	
N3	Calculation of the measurement results	
N4	Preparing a research report	
N5	Computer lab	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F1	PEU_W01, PEU_W02, PEU_K01	test
F2	PEU_W03 , PEU_W04, PEU_W05, PEU_K02	test
F3	PEU_W06 , PEU_W07, PEU_W08, PEU_K03	test
F4	PEU_U04 , PEU_U05, PEU_U06	computational exercises
F5, F6	PEU_U01 , PEU_U02, PEU_U03	test
F7	PEU_U01 , PEU_U02, PEU_U03	report
F1	PEU_W01, PEU_W02, PEU_K01	test
	P1 = 1/3F1 + 1/3F2 +1/3F3 P6 = 0.5(0.4F5+0.4F6+0.2F	7) + 0.5P4

PRIMARY AND SECONDARY LITERATURE

Prima	ary literature
1	E. Gomółka, A. Szaynok, Chemia wody i powietrza, Oficyna Wydawnicza Politechniki Wrocławskiej, 1997.
2	J. Dojlido, Chemia wód powierzchniowych, Wydawnictwo Ekonomia i Środowisko, 1995.
3	B. i E. Gomółkowie, Ćwiczenia laboratoryjne z chemii wody, Oficyna Wydawnicza Politechniki Wrocławskiej, 1998
1	J.H. Seinfeld, S.N. Pandis: Atmospheric chemistry and Physics: Prom Air Pollution to Climate Change, 2nd edition, John
4	Wiley & Sons, USA 2006.
5	D.J. Jacob, Introduction to Atmospheric Chemistry, Princeton University Press, USA 1999.
6	K. Schmidt-Szałowski i inni, Podstawy technologii chemicznej, Oficyna Wydawnicza Politechniki Warszawskiej,
О	Warszawa 2004.
7	Bilitewski B., Hardtle G., Marek K., Podręcznik gospodarki odpadami. Wyd. Seidel-Przywecki Sp. z o.o., Warszawa,
/	2006.
Seco	ndary literature
1	A. Śliwa, Obliczenia chemiczne - zbiór zadań z chemii ogólnej i analitycznej, PWN, 1973
2	G.W. Vanloon, S.J. Duffy, Chemia środowiska, PWN, 2008
3	Wandrasz J., Wandrasz A., Paliwa formowane. Wyd. Seidel-Przywecki Sp. z o.o., Warszawa, 2006
4	Materiały Konferencyjne, Paliwa z odpadów, 2001-2011
5	R.M. Harrison: Principles of Environmental Chemistry. Royal Society of Chemistry, UK 2007

Name and surname:	Izabela Kowalska (water chemistry), Monika Maciejewska (air chemistry), Emilia DenBoer (waste chemistry)
E-mail:	izabela.kowalska@pwr.edu.pl, monika.maciejewska@pwr.edu.pl, emilia.denboer@pwr.edu.pl

Environmental management (n/d)

Faculty	Environmental Engineering
Name in Polish	Zarządzanie środowiskiem
Name in English	Environmental managment
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30				
Number of hours of total student workload (CNPS)	90				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course					
Number of ECTS points	3				
including number of ECTS points for practical(P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.3				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 No prerequisites

SUBJECT OBJECTIVES

C1 Familiarizing students with basics of environmental management

SUBJECT EDUCATIONAL EFFECTS

Relating to	Relating to knowledge:	
PEU_W01	PEU_W01 Gaining knowledge on the basics of environmental management	
Relating to	Relating to social competences:	
PEU_K01	PEU_K01 Becoming aware of the mechanisms of environmental management	

PROGRAMME CONTENT

Form of classes - lecture		Number of
	l t	
Le1	Introduction to environmental management	2
Le2	Goals, concepts and principles of environmental management	2
Le3	Environmental management approaches	2
Le4	Environmental management mechanisms	2

Le5	Environmental management: system and process	2
Le6	Environmental management and science	2
Le7	Environmentalism, social science, economics and environmental manage-ment	2
Le8	Business, law and environmental management	2
Le9	Participants of environmental management	2
Le10	Environmental management versus real- world	2
Le11	Benefits and costs	2
Le12	Environmental management practice (Standards, Environmental Management System for SMEs)	2
Le13	Environmental management practice (Standards, Environmental Management System for SMEs)	2
Le14	Environmental management practice (Standards, Environmental Management System for SMEs)	2
Le15	Assignment	2
Total hours		30

TEACHING TOOLS USED	
N1 Lecture supported with the power point presentation	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_K01	test

PRIMARY AND SECONDARY LITERATURE

Primary literature		
1	C.J. Barrow, Environmental Management for Sustainable Development, Second Edition, Routledge Taylor & Francis Group, London, 2006	
2 Chełmicki W., Woda-zasoby, degradacja, ochrona, PWN, Warszawa 2001		

Name and surname:	Łukasz Szałata
E-mail:	lukasz.szalata@pwr.edu.pl

Spatial planning (n/d)

Faculty	Environmental Engineering
Name in Polish	Planowanie przestrzenne
Name in English	Spatial planning
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	University-wide
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15				
Number of hours of total student workload (CNPS)	60				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course					
Number of ECTS points	2				
including number of ECTS points for practical(P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 No prerequisites

SUBJECT OBJECTIVES

C1	to acquaint students with the foundations of spatial development and the complexity of spatial planning
C2	to present the principles of developing and implementing spatial policy at the national, regional and urban level
С3	to present different planning systems across Europe
C4	to make students aware of the territorial aspects of the EU and national policies

Relating to knowledge:		
DELL WO1	Demonstrate knowledge of determinants of spatial policy at the national, regional level and in other	
PEU_W01	structural units.	
PEU_W02	Identify systemic problems of spatial development.	
PEU_W03	Demonstrate knowledge of contemporary trends in sustainable spatial development	
Relating to social competences:		
PEU_K01	PEU_K01 Critically analyze available information.	
PEU_K02	PEU_K02 Communicate with the professionals working in the built environment	

Form of classes - lecture		Number of hours
Le1	Introduction to spatial planning? territorial aspects of human activities	1
Le2	Development of human settlements.	2
Le3	From a city to functional urban area.	2
Le4	Models in planning.	2
Le5	Planning systems in Europe 1: Poland, France, Germany.	2
Le6	Planning systems in Europe 2: Netherlands, Spain, UK.	2
Le7	Territorial agenda of the EU. Urban agenda of the EU.	2
Le8	Environmental aspects in planning. 2	
Total ho	Durs	15

TEACHING TOOLS USED		
N1	Multimedia presentation	
N2	N2 Written essay prepared on the given topic	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02, PEU_W03, PEU_K01, PEU_K02	Lecture attendance. Essay on the selected spatial planning topic

PRIMARY AND SECONDARY LITERATURE

Drima	ry literature		
1	European Commission (2011) Cities of tomorrow - Challenges, visions, ways forward.		
1	European Commission (2011) Territorial Agenda of the EU. Towards an Inclusive, Smart and Sustainable Europe of		
2	Diverse Regions. http://ec.europa.eu/regional_policy/sources/policy/what/territorial-		
	cohesion/territorial_agenda_2020.pdf		
	European Commission (2016) Urban Agenda for the EU. Pact of Amsterdam. http://urbanagendaforthe.eu/wp-		
3	content/uploads/2016/05/Pact-of-Amsterdam v7 WEB.pdf		
4	European Commission (2014) The urban dimension of EU policies - key features of an EU urban agenda.		
4	Communication to the Council, EP, CoR, EESC. http://eur-lex.europa.eu/legal-		
г	content/EN/TXT/?qid=1429515590530&uri=CELEX:52014DC0490		
5	European Council of Spatial Planners (ECTP-CEU), (2003) The European Council of Town Planners		
6	European Council of Spatial Planners (ECTP-CEU), (2013) The Charter of European Planning. http://www.ectp-		
	ceu.eu/images/stories/PDF-docs/The%20Charter%20of%20European%20Planning-LowResV2.pdf		
_	European Council of Spatial Planners (ECTP-CEU) European Charter on Participatory Demo-cracy in Spatial Planning		
7	Processes. http://www.ectp-ceu.eu/images/stories/PDF-		
_	docs/V10%20final%20LEBF%20on%20ECTP%20Charter%20part%20Democ%20sans%20mod.pdf		
8	ESPON (2010) FOCI - Future Orientation for Cities. Final Report - Scientific Report.		
9	ESPON (2014) TOWN: Small and Medium-Sized Towns. Final Report - Scientific Report.		
10	Leipzig Charter (2007) http://ec.europa.eu/regional_policy/archive/themes/urban/leipzig_charter.pdf		
11	Ward, S.V. (1992) Planning the Twentieth-Century City, John Wiley & Sons.		
Secon	dary literature		
1	Batty, M. (2007) Cities and Complexity. Understanding Cities with Celular Automata, Agen-Based Model and Fractals.		
1	The MIT Press, Cambridge, Massachusetts-London		
2	Batty, M. (2013) The New Science of Cities. Press, Cambridge, Massachusetts-London.		
3	Burdett, R., Sudjic, D., (ed.) (2007) The Endless City. Phaidon.		
4	Hall, P., Pain, K., (2006) The Polycentric Metropolis. Learning from Mega-City Regions in Europe. Earthscan.		
5	Sievert, T., (2003) Cities Without Cities: An Interpretation of the Zwischenstadt. Taylor & Francis.		

Name and surname:	Izabela Mironowicz
E-mail:	izabela.mironowicz@pwr.edu.pl

Reliability of engineering systems (n/d)

Faculty	Environmental Engineering
Name in Polish	Niezawodność systemów inżynierskich
Name in English	Reliability of engineering systems
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15				
Number of hours of total student workload (CNPS)	60				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course					
Number of ECTS points	2				
including number of ECTS points for practical(P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Has a fundamental knowledge of the design, construction and operation of systems in environ-mental engineering.

SUBJECT OBJECTIVES

C1	Gaining basic knowledge of purpose and research methods for assessment of reliability of sys-tems in environmental
CI	engineering.
C2	Gaining basic knowledge of purpose and research methods for risk assessment and operation safety of the systems in
LZ	environmental engineering.

Relating to I	Relating to knowledge:		
PEU_W01	Has a knowledge about functioning of the engineering systems (water supply, wastewater disposal, heating,		
	air conditioning, etc.) and requirements for the users and the environment.		
PEU W02	Has a knowledge about the advisability of testing the reliability, safety and risk of engineering systems and		
	the basic indicators used in this research.		
PEU W03	Knows the basic methods of analysis and evaluation of the reliability and safety opera-tion of engineering		
	systems based on data obtained from their operation and maintenance.		

		Number
Form of	classes - lecture	of
		hours
Le1	Introduction to the course. Reliability of systems in environmental engineering. Terminology.	2
Le2	Purpose, scope and methods of testing the reliability of engineering structures. Indicators of reliability.	2
Le3	Reliability of structures. Reliability analysis of selected objects and systems engineering.	2
Le4	The required level of reliability. Safety and risk in environmental engineering. Terminology.	2
Le5	Methods of safety analysis and risk assessment.	2
Le6	The risk analysis and safety of selected objects and engineering systems.	2
Le7	Risk and safety management.	2
Le8	Final test.	1
Total ho	purs	15

TEACHING	TEACHING TOOLS USED	
N1	Informative lecture, multimedia presentation.	
N2	Problem solving lecture.	
N3	Self study; Individual studies and preparation for final test.	
N4	Consultation and self study.	
N1	Informative lecture, multimedia presentation.	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02, PEU_W03	final test

PRIMARY AND SECONDARY LITERATURE

Primary literature		
1	Smith D.: Reliability, Maintainability and Risk - Practical Methods for Engineers (8th ed.), Elsevier 2011	
2	Tung Y., Yen B., Melching - Hydrosystems Engineering Reliability Assessment and Risk Analysis, McGraw-Hill, 2006	
Seco	ndary literature	
1	Hester R.E., Harrison R.M.: Risk assessment and Risk Management, Royal Society of Chemistry, 1998.	

Name and surname:	Aleksandra Sambor
E-mail:	aleksandra.sambor@pwr.edu.pl

Organization of construction works (n/d)

Faculty	Environmental Engineering
Name in Polish	Organizacja robót budowlanych
Name in English	Organization of construction works
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15				
Number of hours of total student workload (CNPS)	60				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course					
Number of ECTS points	2				
including number of ECTS points for practical(P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Has a fundamental knowledge of technology and organization of construction works.

SUBJECT OBJECTIVES

C1	Gaining knowledge about the technology and organization of installation works.
C2	Knowledge of modern technologies and organization of installation works.
C3	Acquisition of knowledge about proper use of technology works in the design and execution of installation works.
C4	Acquisition of installation work organization skills used in on-site construction.

Relating to l	Relating to knowledge:		
PEU_W01 Has a knowledge of modern technology and organization of installation works.			
PEU_W02 Knows how to apply modern technology of work organization.			
PEU_W03	Able to select the correct parameters for the different technologies work.		
PEU_W01 Has a knowledge of modern technology and organization of installation works.			

Form of	classes - lecture	Number of hours
Le1	Stages and phases of the investment process. The rights and obligations of the participants of the investment process. The components of the construction project. Project documentation as a basis for the organization of installation works.	2
Le2	Technology of internal and external installation works. Elements of the construction site management. The conditions of storage of basic building materials.	2
Le3	The organization of internal and external installation works.	2
Le4	Take-off (simplified and detailed method). Types of estimates and costing methods.	2
Le5	Estimate of investor (simplified and detailed method). Computer-aided cost estimating, Review of software used for cost estimation.	2
Le6	Computer-aided project management.	2
Le7	Earthworks (categories of land, preparatory works, execution of the works).	2
Le8	Test	1
Total ho	urs	15

TEACHING	TEACHING TOOLS USED	
N1	N1 Informative lecture.	
N2	Problem solving lecture.	
N3	Multimedia presentation.	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02, PEU_W03, PEU_W04	Final test.

PRIMARY AND SECONDARY LITERATURE

Prin	Primary literature			
1	Hendrickson C. Project Management for Construction. Department of Civil and Environmental Engineering, 2008,			
1	Carnegie Mellon University (electronic version available at: http://pmbook.ce.cmu.edu/)			
2	A Guide to the Project Management Body of Knowledge (PMBOK Guide) - 5th ed., Project Management Institute, Inc.			
3	Woodward J.F.: Construction project management: Getting it right first time. Thomas Telford, 1997.			
4	Peurifoy R.L, Oberlender G.D.: Estimating Construction Costs. McGraw-Hill, 2001			
5	Jonathan F. Hutchings, Project Scheduling Handbook (Civil and Environmental Engineering). Marcel Dekker, 2003.			
Seco	Secondary literature			
1	Fewings P., Construction project management :An integrated approach. Taylor & Francis, 2005.			
2	Neale R. H., Neale D. E. Construction planning. Engineering management. Amer Society of Civil Engineers, 1990.			
3	Gahlot P.S., Dhir B.M.: Construction Planning And Management, New Age Publishers, 1990.			

Name and surname:	Aleksandra Sambor
E-mail:	aleksandra.sambor@pwr.edu.pl

Building regulations (n/d)

Faculty	Environmental Engineering
Name in Polish	Prawo budowlane
Name in English	Building regulations
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30				
Number of hours of total student workload (CNPS)	60				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course					
Number of ECTS points	1				
including number of ECTS points for practical(P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.3				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 No requirements.

SUBJECT OBJECTIVES

C1	C1 Gaining knowledge about the building regulations in Poland, EU and international standards.			
C2	Acquisition of knowledge about engineering design, execution and construction according to current regulations and			
C2	standards.			

Relating to knowledge:			
PEU_W01	PEU_W01 Has a knowledge of law and regulations related to investment process.		
Relating to soci	Relating to social competences:		
PEU_K01 Is aware of responsibilities and consequences for decisions.			

Form of	classes - lecture	Number of hours
Le1	Stages and phases of the investment process. The rights and obligations of the participants of the investment process. The components of the construction project. Project documentation as a basis for the organization of installation works.	6
Le2	European Union legislation. EC Directives related to investment process. Building policy and legislation.	2
Le3	Building process regulations.	4
Le4	Building code - Poland, EU and selected international examples.	4
Le5	Building code - professional responsibilities and penalties.	4
Le6	Technical conditions and requirements for buildings and their location. Building permit.	4
Le7	Safety and health protection at construction works. Professional engineer certification in Poland and EU.	4
Le8	Final test.	2
Total ho	ours	30

TEACHING	TEACHING TOOLS USED	
N1	N1 Informative lecture.	
N2	2 Problem solving lecture.	
N3	Multimedia presentation.	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_K01	Final test

PRIMARY AND SECONDARY LITERATURE

Primary literature				
1	EC Directive internet portal.			
2	Polish legislation internet portal.			
3	The Construction Law - Prawo budowlane. Tłumaczenie: Dorota Bielecka, Maciej Bielecki. Wydawnictwo C.H. Beck.			
Seco	ndary literature			
1	M. J. Billington, Keith Bright, J. R. Waters (2007) The Building Regulations: Explained and Illustrated 13th Edition,			
1	Wiley-Blackwell			

Name and surname:	Aleksandra Sambor
E-mail:	aleksandra.sambor@pwr.edu.pl

Renewable energy systems (n/d)

Faculty	Environmental Engineering	
Name in Polish	Odnawialne źródła energii	
Name in English	Renewable energy systems	
Main field of study	Environmental Quality Management	
Level	II.	
Form	full-time	
Kind of subject	obligatory	
Subject code		
Group of courses	p of courses NO	

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15				
Number of hours of total student workload (CNPS)	60				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course					
Number of ECTS points	2				
including number of ECTS points for practical(P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Basic knowledge in the field of physics, energy performance and environmental engineering

SUBJECT OBJECTIVES

C1	To acquaint students with the alternative energy sources, the use and simple operation of energy systems, components
C2	To familiarize with examples of technical installation, operation of renewable energy systems

Relating to knowledge:			
PEU_W01	PEU_W01 One has knowledge related to renewable energy sources and technical solution of installation		
PEU_W02	PEU_W02 One knows the range of applicability and design criteria		
Relating to soc	Relating to social competences:		
PEU_K01 Critically analyze available information.			
PEU_K02	PEU_K02 Communicate with the professionals working in the built environment		

		Number
Form of classes - lecture		of
		hours
Le1	Introduction to climate change, energy challenges, energy and environ-ment, forms of energy, laws of energy conservation, importance of using renewable energy sources for sustainable development	2
Le2	Classification , characteristic and comparison of energy sources, energy efficiency, demand side management, principles of energy systems	2
Le3	Solar thermal, electrical systems, applications	2
Le4	Renewable hybrid systems, applications	2
Le5	Wind energy systems, hydro-energy systems	2
Le6	Energy from waste and biomass.	2
Le7	Software RETscreen application for renewable energy systems designing	2
Le8	Diagnostic test	1
Total hour	S	15

TEACHING TOOLS USED		
N1	Informative lecture, preparing report	
N2	N2 Subject lecture	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02	Test

PRIMARY AND SECONDARY LITERATURE

Prima	Primary literature		
1	Boyle G., Renewable Energy; Power for a Sustainable Future, Oxford University Press (2004)		
2	Twidell J., Weir, Renewable Energy Resources, Taylor & Francis (2005)		
3	Martin Kaltschmitt, Wolfgang Streicher, Andreas Wiese: Renewable Energy: Technology, Economics and Environments, Springer 2007		
Seco	ndary literature		
1	Leon Freris, David Infield: Renewable Energy in Power Systems, Wiley 2008		
2	IEA, World Energy Outlook 2014. Paris: OECD/IEA		
3	Current literature		
4	internet		

Name and surname:	Marderos Ara Sayegh
E-mail:	ara.sayegh@pwr.edu.pl

Water quality management (n/d)

Faculty	Environmental Engineering
Name in Polish	Zarządzanie jakością wód
Name in English	Water quality management
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30				
Number of hours of total student workload (CNPS)	90				
Form of crediting	Examination with grade				
For group of courses mark (X) final course					
Number of ECTS points	3				
including number of ECTS points for practical(P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.3				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Knowledge in general chemistry, physics, chemistry and microbiology of water as well as hydrology

SUBJECT OBJECTIVES

C1	Delivering knowledge related to the course of natural processes in hydrosphere and factors creating water quality
C2	Familiarizing students with assessment of aquatic environment reaction to the changes in water systems

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:				
DELL MO1	Students know quality of hydrosphere and factors that it create. Students know mechanisms of migration			
PEU_W01	and transformation of pollutants in hydrosphere			
DELL MOS	Students are able to determine stoichiometry and kinetics of reactions of pollutants transformation in			
PEU_W02	hydrosphere and are able to predict water quality in emer-gency state of contamination			
PEU_W03	Students know how to create the plan of water quality protection			

PROGRAMME CONTENT

Form of classes - lecture		Number
		of
		hours
Le1	Systems of water quality management in EU and Poland arrangement	2
Le2	Stoichiometry and kinetics of reactions in aquatic environment	2
Le3	Rules of constant rate and order of reaction determination	2
Le4	Mathematical models of physical processes in hydrosphere (models of natural system hydraulics,	2

models of disturbed flow, systems with heterogeneous reactions) Le5 Mathematical models of physical processes in hydrosphere (models of natural system hydraulics) Le6 Mathematical models of physical processes in hydrosphere (models of disturbed flow) Le7 Forecasting of water quality changes in environment - introduction
Le6 Mathematical models of physical processes in hydrosphere (models of disturbed flow)
Le7 Forecasting of water quality changes in environment - introduction
Le8 Analysis of pollutant transport within phases and through interphase boundary
Le9 Principles of mathematical models of water quality changes construc-tion
Le10 Models of water quality resulting from natural hydrogeological con-ditions
Le11 Quality models of water contaminated by anthropogenic sources
Le12 Analysis of model solutions for different operational states
Le13 Models of lake water quality changes (models of lake water circula-tion, ecological models, limnological models)
Le14 Quality models of groundwater contaminated by anthropogenic sources involving geological layer properties
Le15 Examples of aquatic environment assessment impact
Total hours

TEACHING TOOLS USED		
N1	Inquire lecture	
N2	Problem lecture	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during		
semester), P - concluding (at	Learning outcomes code	Way of evaluating learning outcomes achievement
semester end)		
P1	PEU_W01, PEU_W02, PEU_W03	Examination

PRIMARY AND SECONDARY LITERATURE

Prima	ry literature		
1	Adamski W., Parks E., Water Quality Management, Wydawnictwa Politechniki Wrocławskiej, Wrocław 2011		
2	Chełmicki W., Woda-zasoby, degradacja, ochrona, PWN, Warszawa 2001		
3	Roberts A.E., Water Quality Control Handbook, McGraw-Hill 2006		
4	Krenkel P., Water Quality Management, Academic Press 2012		
5	Kiley G., Environmental Engineering, McGraw-Hill (1997)		
Secon	Secondary literature		
1	Litynski T., Jurkowska H., Żyzność gleby i odżywianie się roślin, PWN, Warszawa, 1982		
2	Allan J.D., Ekologia wód płynących, PWN, Warszawa, 1998		
3	Rup K., Procesy przenoszenia zanieczyszczeń w środowisku naturalnym, Wydawnictwo Naukowe PWN, Warszawa 2019		
4	Bajkiewicz-Grabowska E., Magnuszewski A., Mikulski Z., Przewodnik do ćwiczeń z hydrologii ogólnej, PWN, Warszawa 1993		
5	Licznar P., Modelowanie erozji wodnej gleby, Wyd. Akademii Rolniczej we Wrocławiu, Wrocław, 2001		
6	Atlas Hydrologiczny Polski, IMiGW, Wyd. Geol. Warszawa, 1996		

Name and surname:	Wojciech Adamski
E-mail:	wojciech.adamski@pwr.edu.pl

Raw materials management (n/d)

Faculty	Environmental Engineering
Name in Polish	Gospodarka surowcami
Name in English	Raw materials management
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		15		
Number of hours of total student workload (CNPS)	30		30		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	1		1		
including number of ECTS points for practical(P) classes			1		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8		0.8		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 The basic knowledge in the field of inorganic and organic chemistry

SUBJECT OBJECTIVES

C1	Gaining knowledge in the quality and quantity of domestic natural resources (fossil fuels, chemical and plant raw materials, metals, rocks) in Poland, other EU countries and in the world
C2	Understanding the pathways from raw material to waste (LCA) for key industries

Relating to kr	nowledge:		
PEU_W01	Student has knowledge of quality and quantity of domestic mineral resources, plant raw materials and fossil fuels in selected EU countries, methods of their processing and the kinds of generated waste		
PEU_W02	J_W02 Student is able to define the various stages of the life cycle of products and processes (from raw materials, through products to waste)		
Relating to sk	xills:		
PEU_U01	Student is able to gather, compile and present information about the market of raw materials in selected country and knows how to use them.		
PEU_U02 Student is able to compare data from different countries , answer questions from the group, participate in discussions on other topics			
Relating to so	ocial competences:		
PEU_K01	Student is aware of the dangers to the environment arising from the processing of raw materials		
PEU_K02	Student can cooperate with a group and perform various roles including the role of a presenter, discussion member, an opponent		

Form	of classes - lecture	Number of	
FOITH	of classes - fecture	hours	
Le1	From Raw Materials to Waste: Life Cycle Assessment (LCA)	2	
Classification of minerals and ways to protect the deposits, the amount of reserves and annual		2	
Le2	production of raw materials in Poland compared to the EU and the world, trends of changes	2	
Le3	Metallic raw materials: exploration and processing of copper, the types of waste. KGHM international	2	
Le4	Chemical raw materials: extraction and processing of rock salt, properties and uses of chlorine & soda ash	2	
Le5	Energy resources: mining and processing of hard coal, types of waste	2	
Le6	Mineral resources: gypsum, anhydrite (properties, applications, gypsum waste)	2	
Le7	Plant raw materials: forest production: characteristics and use of wood, waste management	2	
Le8	Test	1	
Total l	nours	15	

Form of classes - laboratory		Number of
		hours
Se1	Introduction; an overview of the scope of the seminar, presentation the latest laws and regulations relating to the seminar, choice of presentation topics	2
Se2	Presentation by the students native land in terms of geography, climate, raw materials and industry. Group discussions. Depending on the group size and native lands of the students, additional presentations on the characteristics, extraction and processing of: iron, aluminum, zinc and lead, sulfur (native and waste), lignite, natural gas, oil and bituminous shale, raw materials for lime and cement industries	12
Se3	Overdue presentations, seminar summary	1
Total l	hours	15

TEACHING TOOLS USED		
N1	Informative lecture	
N2	Consultations	
N3	Presentation	
N4	Discussion	
N5	Exam	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02, PEU_K01	Test
F1	PEU_U01	Consultations
F2	PEU_U01, PEU_U02, PEU_K02	Presentation
F3	PEU_U02, PEU_K02	Discussion
	P2 = (F1+F2 + F3)/3	

PRIMARY AND SECONDARY LITERATURE

Prin	Primary literature			
1	J.R.Craig, D.J. Vaughan, B.J. Skinner, Zasoby Ziemi, PWN, Warszawa 2003			
2	Information from the website of the Polish Geological Institute, www.pgi.gov.pl (English version available)			
3	Foreign articles within the framework of the course			
Sec	condary literature			
1	Newspaper "Rzeczpospolita", Appendix Economy			
2	News from the website of the Polish Ministry of Economy (www.mg.gov.pl/newsletter) and from other countries (native			
	country of student)			

Name and surname:	Emilia den Boer
E-mail:	Emilia.denboer@pwr.edu.pl

Water Treatment Technology (n/d)

Faculty	Environmental Engineering
Name in Polish	Oczyszczanie wody
Name in English	Water Treatment Technology
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		15		
Number of hours of total student workload (CNPS)	60		30		
Form of crediting	Examination with grade		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	2		1		
including number of ECTS points for practical(P) classes			1		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.3		0.8		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Basic knowledge on the engineering level within the range of water chemistry and water treatment

SUBJECT OBJECTIVES

C1	Learning of mechanisms, course and efficiency of nonconventional water treatment pro-cesses, also for chosen industrial purposes, as well as problems related to water secondary pollution
62	Gaining skills for impact assessment of quality of treated water, technological parameters of unit treatment
C2	processes on removal efficiency of different fraction of pollution

Relating to knowledge:			
PEU_W01	Student has knowledge related to course and efficiency of nonconventional water treatment processes Student is able to determine water treatment technology dependent on water composition and quality required, involving rules of circular economy		
PEU_W02	Student has knowledge related to the operation principles of devices used for nonconventional and advanced systems of water treatment		
Relating to skills:			
PEU_U01	Based on raw water analysis student is able to propose technological version of wa-ter treatment, among other desalination, softening and demineralization Student is able to carry out laboratory scale experiments and based on the result assess usability of methods proposed		
Relating to social competences:			
PEU_K01	Capability for creative performance		
PEU_K02	Capability of way of proceedings determination for specified objective achievement		

Form of	classes - lecture	Number of
		hours
Le1	Factors influencing course and efficiency of basics surface water treatment processes	2
Le2	Factors influencing course and efficiency of basics ground water treatment processes	2
Le3	Nonconventional processes of water treatment - infiltration (mechanisms, course, efficiency, devices applied)	2
Le4	Nonconventional processes of water treatment – chemical oxidation (mechanisms, course, efficiency, devices applied)	2
Le5	Nonconventional processes of water treatment – filtration through biologically active bed (mechanisms, course, efficiency, devices applied)	2
Le6	Nonconventional processes of water treatment – softening (mechanisms, course, efficiency, devices applied)	2
Le7	Nonconventional processes of water treatment - precipitation (mechanisms, course, efficiency, devices applied)	2
Le8	Nonconventional processes of water treatment – ion-exchange (mechanisms, course, efficiency, devices applied)	2
Le9	Membrane processes in water renovation and resources recovery	2
Le10	Nonconventional processes application for drinking water treatment	2
Le11	Nonconventional processes application for industrial wastewater treatment	2
Le12	Chemical and biological stability of water	2
Le13	Nonorganic and organic water treatment by-products	2
Le14	Water quality changes in water distribution system	2
Le15	Secondary pollution protection	2
Total ho	urs	30

Form of classes - laboratory		Number of
		hours
La1	Introduction, talk over the range of experiments and health and safety regulation in chemical laboratory. Analytical methods	2
La2	Comparison of coagulation and enhanced coagulation efficiency in surface water treatment	4
La3	Removal of iron and manganese compounds	4
La4	NOM removal from water by adsorption and ion-exchange process	4
La5	Crediting	1
Total hours		15

TEACHING	TEACHING TOOLS USED	
N1	N1 Informative lecture	
N2	Problem lecture	
N3	Results of measurement calculation	
N4	Report working out	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

	Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement		
1	P1	PEU_W01, PEU_W02	Examination		
2	F1-F3	PEU_U01, PEU_K01, PEU_K02	Test		
3	F4	PEU_U01, PEU_K01, PEU_K02	Report		
	P2 = 0.25F1 + 0.25F2 + 0.25F3 + 0.25F4				

PRIMARY AND SECONDARY LITERATURE

Prir	Primary literature				
1	Kowal A.L., Świderska-Bróż M., Oczyszczanie wody Podstawy teoretyczne i technologiczne, procesy i urzą⊡dzenia, PWN, Warszawa 2009.				
2	Adamski W. Szlachta M., Water treatment technology: principles and modeling, Wrocław University of Technology, 2011				
3	Uzdatnianie wody. Procesy fizyczne, chemiczne i biologiczne, praca zbiorowa pod redakcją J. Nawrockiego, PWN, Warszawa 2010.				
4	Crittenden J., MWH's water treatment: principles and design, John Wiley & Sons, Third Edition, 2012				
5	Edzwald J.K, Water quality & treatment : a handbook on drinking water, McGraw-Hill, 2011				
6	Instruction for laboratory exercises				
7	B. E. Gomółkowie, Ćwiczenia laboratoryjne z chemii wody, Wyd. PWr, Wrocław 1996.				
8	Bodzek M., Konieczny K., Wykorzystanie procesów membranowych w uzdatnianiu wody, Projprzem-EKO, Bydgoszcz 2005				
9	Journals related to water treatment technology				
Sec	ondary literature				
1	M. Bodzek, K. Konieczny, Usuwanie zanieczyszczeń nieorganicznych ze środowiska wodnego metodami membranowymi,				
1	Wyd. Seidel-Przywecki, Warszawa 2011				
2	S. l D. Faust, O. M. Aly, Chemistry of Water Treatment. Lewis Publisher, Second Edition, 1998.				
3	G. Budd, B. Long, J. Edwards, P. Singer, M. Meisch, Evaluation of MIEX Process Impacts on Different Source Waters. AwwaRF Report 91067F, 2006.				

Name and surname:	Wojciech Adamski
E-mail:	Wojciech.adamski@pwr.edu.pl

Sanitary biology (n/d)

Faculty	Environmental Engineering
Name in Polish	Biologia sanitarna
Name in English	Sanitary biology
Main field of study	Environmental Quality Management
Level	II.
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		15		
Number of hours of total student workload (CNPS)	30		30		
Form of crediting	Examination with grade		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	1		1		
including number of ECTS points for practical(P) classes			1		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8		0.8		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Has a basic knowledge about biology, microbiology and biochemistry

SUBJECT OBJECTIVES

C1	To gain the basic knowledge of structure, functioning and systematics of major groups of microorganisms
C2	To gain the knowledge of basic methods of microbial culturing and environment quality assessment
C3	To gain the basic knowledge of application of microorganisms in environmental pollutants clean-up
C4	To gain skills in carrying out the microbiological assessment of environmental samples

Relating to knowledge:				
DELL M/O1	Has basic knowledge of sanitary biology, including requirements for water, soil, air and wastes; knows			
PEU_W01	microbiological processes, which play the basic role in biological methods of environmental clean-up			
Relating to skills:				
PEU_U01 Is capable to perform sanitary analysis of water, air and soil and to assess the quality of analyzed sample				
Relating to social competences:				
PEU K01 Is conscious about dangers resulted from emission of microbiological pollutants				

		Number
Form of	Form of classes - lecture	
		hours
Le1	Nutrition, growth and reproduction across microorganisms. Culturing methods. Characteristics of selected groups of microorganisms	2
Le2	Microbiology of water and effluents	2
Le3	Microbiology of soil and waste	2
Le4	Microbiology of air	2
Le5	Application of microorganisms in environment protection	2
Le6	Biodeterioration of natural and synthetic materials	2
Le7	Advanced techniques of microbiology	2
Le8	The basics of microbial genetics	1
Total hours		15

		Number
Form of	Form of classes - laboratory	
		hours
1-1	Introduction, safety guidelines in microbiological laboratory. Morphology of bacterial cell, basic	3
La1	staining. Morphology of bacterial cell. Two dyes staining.	3
La2	Sterilization and disinfection. Inoculation and culturing methods.	3
La3	Microbiological analysis of water.	3
La4	Microbiological analysis of soil	3
La5	Microbiological analysis of air. Credit.	3
La2	Sterilization and disinfection. Inoculation and culturing methods.	3
Total hours		15

TEACHI	TEACHING TOOLS USED	
N1	Informative lecture	
N2	Problematic lecture	
N3	Calculation of the measurement results	
N4	Preparing a research report	
N5	Computer lab	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_K01	Examination
F1	PEU_U01	Practical skills
F2	PEU_U01, PEU_K01	Presentation/report
	P2=0.5F1+0.5F2	

PRIMARY AND SECONDARY LITERATURE

Primary literature	
1	Willey J.M., Sherwood L.M., Woolverton C.J., Prescott?s Microbiology.
2	Kołwzan B., Adamiak W., Rybak J., Sanitary biology, Łodź: PRINTPAP, 2011
3	Schlegel H.G., General Microbiology. Cambridge University Press, 1993

Name and surname:	Mirela Wolf Baca
E-mail:	Mirela.wolf-baca@pwr.edu.pl

AutoCAD (n/d)

Faculty	Environmental Engineering
Name in Polish	AutoCAD
Name in English	AutoCAD
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)			15		
Number of hours of total student workload (CNPS)			30		
Form of crediting			Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points			1		
including number of ECTS points for practical(P) classes			1		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)			0.8		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Has a fundamental knowledge and skills in technical drawing, descriptive geometry and computer science.

SUBJECT OBJECTIVES

C1	Familiarize with the basics of CAD software using Autodesk AutoCAD.
C2	The acquisition of skills for operation of 2D CAD drafting software using Autodesk AutoCAD
C3	The acquisition of skills for preparation of technical documentation using Autodesk AutoCAD

Relating to knowledge:		
PEU_W01	Student has the knowledge in the field of the physical and chemical analysis required in assessment of drinking water quality	
PEU_W02	Student understands the usefulness of physicochemical analysis in assessment of water quality	
PEU_W03	Student is familiar with basic notions: atmosphere, troposphere, trace compound, air contaminant, mass	
120_003	balance of the substance in the air	
PEU_W04	Student is able to describe and explain the processes which take place in the troposphere in gaseous phase	
PEU_W05	Student is able to describe and explain the processes which take place in the troposphere in liquid phase	
PEU_W06	Student knows the methods of determining sieve, morphological and chemical composition of waste	
PEU_W07	Student is able to specify the parameters that determine the calorific and fertilizing properties of waste	
PEU_W08	Student knows the theoretical basis of waste treatment, can compare individual technologies	
Relating to skills:		
PEU_U01	Able to work with 2D CAD drafting program Autodesk AutoCAD.	

PEU_U02	Able to enter geometric data using various functions of the software.		
PEU_U03 Able to properly choose the procedures and instructions in the preparation of digital documentation.			
PEU_U04	Able to prepare the final engineering drawing for printing and digital publishing.		
Relating to social competences:			
PEU_K01	Has the ability to obtain information from various sources.		

Form of	classes – laboratory	Number of hours
La1	Discussion of the principles and safety in the computer laboratory. Intro-duction, history of computer aided design. Introduction to CAD/CAM software (Open-source and commercial)	2
La2	Methods for location of points on the drawing area, types of coordinates and units, drawing boundaries. Layers, meaning, how to create and change their parameters. Creating a template	2
La3	Basic commands for creating, deleting simple geometric elements. Practi-cal exercises. Presentation of the commands associated with the modifica-tion and transformation of objects. Hatch sections: methods and hatches, parameters and settings. Practical exercises	2
La4	Text in AutoCAD: formatting styles, methods for creating text objects, edit text, change. Printing drawings, printing device configuration, parameter setting print edition. Practical exercises	2
La5	Sizing objects. Creating a linear dimension. Sizing radial and reference. Formatting dimension styles. Design of a complete 2D drawing (basic difficulty level). Practical exercises	2
La6	Create own library of blocks, save to disk, share and publish in internet (cloud services, shared environment), insert into drawing, splitting into separate components. Using blocks from external sources (internet)	2
La7	Preparation of intermediate 2D drawings. Preparation of advanced 2D drawings. Advanced drafting options	2
La8	Introduction to 3D modelling. Advanced practical exercises	1
Total ho	urs	15

TEACHIN	TEACHING TOOLS USED	
N1	CAD software Autodesk AutoCAD.	
N2	Sample drawings (at different difficulty level).	
N3	Digital libraries of engineering elements.	
N4	Consultation.	
N5	Discussion of techniques used.	
N6	Individual studies and self study.	
N7	Individual work: preparation for classes.	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F1-F5	PEU_U01, PEU_U02, PEU_U03, PEK_U04, PEK_K01	Discussion. Preparation of drawing
	P = 0.2F1 + 0.2F2 + 0.2F3 +0.2F4 + 0.2F5	

PRIMARY AND SECONDARY LITERATURE

Primary literature		
1 B. Fane (2015), AutoCAD 2014 For Dummies, John Wiley & Sons		
E. Finkelstein (2015), AutoCAD 2015 Bible, Wiley Publishing Inc.		

Name and surname: Michał Oktawiec	
E-mail:	michal.oktawiec@pwr.edu.pl

Water supply systems (n/d)

Faculty	Environmental Engineering
Name in Polish	Zaopatrzenie w wodę
Name in English	Water supply systems
Main field of study	Environmental Quality Management
Level	II .
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		15		
Number of hours of total student workload (CNPS)	30		30		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	1		1		
including number of ECTS points for practical(P) classes			1		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8		0.8		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Has a basic knowledge of hydraulics.

SUBJECT OBJECTIVES

C1	Gaining knowledge in water supply systems design and modeling.	
C2	Gaining knowledge concerning current materials and sanitary fittings used for water distribution systems construction.	
C3	Acquiring skills of water supply systems computer models construction and practical application.	

Relating to knowledge:		
PEU_W01	Has knowledge of water distribution systems design and modeling.	
PEU_W02	EU_W02 Has knowledge of materials and sanitary fittings used for water distribution systems construction.	
DELL WOS	Knows the basic methods, techniques, and tools used to build and calibrate models of water distribution	
PEU_W03	systems	
Relating to skills:		
PEU_U01 Is able to design water distribution system.		
PEU_U02 Is able to develop a computer model of water distribution system.		
PEU_U03 Is able to simulate water flows for various water use scenarios.		
Relating to social competences:		
PEU_K01 Is aware of the dangers to the society resulting from water supply system malfunction.		

Form of classes - lecture		Number of
		hours
Le1	Introduction to water supply systems lectures. Anatomy of contemporary water supply systems.	2
Le2	Guidelines concerning materials and sanitary fittings used for water distribution systems construction.	2
Le3	Estimation of current and future water demands. Peaking factors and time-varying demands.	2
Le4	Water distribution networks hydraulics.	2
Le5	Assembling a model of water supply system, description of typical model components.	2
Le6	Integrating GIS and hydraulic modeling. Using SCADA data for hydraulic modeling.	2
Le7	Identification and solving common water distribution system problems.	2
Le8 Pass writing.		1
Total hours		30

		Number
Form of classes - project		of
		hours
Pr1	Design project release and discussion.	2
Pr2	Water distribution system layout planning.	2
Pr3	Daily water demands, peaking factors and time-varying demands identification.	2
Pr4	Hydraulic calculations and system sizing.	2
Pr5	Building computer model of water distribution system. Defining basic elements and network topology.	2
Pr6	Steady-state and extended-period simulations of water flows for different scenarios.	2
Pr7 Simulation results overview.		2
Total ho	DURS	15

TEACHING	TEACHING TOOLS USED	
N1	N1 Informational lecture.	
N2	Computer laboratory.	
N3	Consultations.	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

	Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
1	P1	PEU_W01, PEU_W02, PEU_W03, PEU_K01	Pass writing.
2	F1	PEU_U01, PEU_U02, PEU_U03, PEU_K01	Evaluation of computational and graphical part of design project
3	F2	PEU_U01, PEU_U02, PEU_K01	Critical discussion of design
	P2 = 0.8F1 + 0.2F2		

PRIMARY AND SECONDARY LITERATURE

Prim	Primary literature		
1	Haestad Methods, T.M. Walski, D.V. Chase, D.A. Savic, W. Grayman, S. Beckwith, E. Koelle, Advanced Water Distribution Modeling and Managment, Haestad Press, 2004		
2	P. Lonsdale, D. Obradovic, Public Water Supply: Models, Data and Operational Management, CRC Press, 1998		
3	L. Mays, Water Distribution System Handbook, McGraw-Hill Professional, 1999		
Seco	Secondary literature		
1	1 EN 805, Water supply. Requirements for systems and components outside buildings		
2	Siwoń Z., Łomotowski J., Cieżak W., Licznar P., Cieżak J., Analizy i prognozowanie rozbiorów wody w systemach wodociągowych, PAN, Komitet Inżynierii Lądowej i Wodnej, Instytut Podstawowych Problemów Techniki, Warszawa, 2008		

Name and surname:	Paweł Licznar
E-mail:	Pawel.licznar@pwr.edu.pl

Biodegradable materials(n/d)

Faculty	Environmental Engineering
Name in Polish	Materiały biodegradowalne
Name in English	Biodegradable materials
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30				
Number of hours of total student workload (CNPS)	60				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course					
Number of ECTS points	2				
including number of ECTS points for practical(P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.3				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 No prerequisites

SUBJECT OBJECTIVES

- 1		
	C1	the electric beautiful at the field of enemia decortain.
	(1	Has a basic knowledge in the field of organic chemistry

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:			
PEU_W01 Has knowledge of biodegradable materials applications on a global scale. Can assess their pros and cons, in the field of application and environmental impact.			
PEU_W02 Knows raw materials for biodegradable materials production, regarding to world region. Knows biodegradable materials used in construction, medicine, automotive and construction industry			
Relating to social competences:			
PEU_K01	1 Understands the need for continuous expand of their knowledge		

PROGRAMME CONTENT

Form of c	asses - lecture	Number of hours
Le1	Introduction	3
Le2	Life Cycle Assesment of biodegradable materials	2
Le3	Composting, methods, standards, monitoring	2

Le4	Composting, methods, standards, monitoring	2
Le5	PLA, production, processing, applications	3
Le6	PHB, production, processing, applications	3
Le7	Starch, production, processing, applications	3
Le8	Lignin and cellulose materials	3
Le9	Visit at the laboratory, presentation of raw materials, processing equipment, typical end products	2
Le10	Biodegradable materials in medicine	3
Le11	Biodegradable materials in automotive industry	2
Le12	Test	2
Total hour	S	30

TEACHING TOOLS USED		
N1	Lecture	
N2	Issues of concern	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02, PEU_U01	Test

PRIMARY AND SECONDARY LITERATURE

Primary literature			
1 Handbook of Biopolymers and Biodegradable Plastics - Properties, Processing and Applications, ed.			
	Ebnesajjad, Sina, Elsevier/William Andrew, 2013.		
Secondar	ry literature		
1	Biodegradable polymer blends and composites from renewable resources, ed. by Long Yu, Wiley and sons		
1	2009		

Name and surname:	Stanisław Frąckowiak	
E-mail:	stanislaw.frackowiak@pwr.edu.pl	

Wastewater Treatment Technology (n/d)

Faculty	Environmental Engineering
Name in Polish	Technologia oczyszczania ścieków
Name in English	Wastewater Treatment Technology
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		15		
Number of hours of total student workload (CNPS)	60		30		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	2		1		
including number of ECTS points for practical(P) classes			1		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.3		0.8		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1	1 Knowledge on engineering level in the range of technological processes of sewage treatment and sludge processing						
2	Knowledge within the range of general chemistry - stoichiometry and kinetics of transfor-mations						

SUBJECT OBJECTIVES

C1	Learning of scientific basis of engineering of biological processes for sewage treatment and sludge processing				
C2	Understanding of importance of sewage contamination fractionation in context of mechanisms and efficiency of their				
C2	removal				
СЗ	Understanding of relation between biological treatment of sewage efficiency and process parameters and their				
CS	connection with sludge stabilization				
C4	Understanding of mechanisms of organic pollutants, nitrogen and phosphorous removal from waste water, and				
C4	sludge processing				
CE	Getting acquainted with chosen laboratory methods of sewage treatment processes and sludge processing				
C5	investigation				

Relating to knowledge:				
PEU_W01	Knowledge of scientific fundamentals of engineering of biological treatment processes for sewage treatment			
PEU_W02	Capability of selection of technological system for municipal sewage treatment for proper efficiency of organic compounds, nitrogen and phosphorous removal, as well as recovery of nutrients			
PEU_W03	Capability of observed removal efficiency of organic compounds, nitrogen and phosphorous, connection with parameters of biological treatment			

Relating to skill	Relating to skills:				
PEU_U01 Capability of laboratory tests of chosen processes of sewage treatment and sludge processing of and obtained results interpretation					
PEU_U02 Capability of conclusions from laboratory tests for technological process assessment					
Relating to social competences:					
PEU_K01	PEU_K01 Capability of creative activity				
PEU_K02 Capability of proper way of proceedings for proper goal achievement determination					

		Number	
Form of	Form of classes - lecture		
		hours	
Le1	Sewage characteristic in context of its biological treatment	2	
Le2	Mechanisms of organic compounds removal by biological treatment methods	2	
Le3	Mechanisms of organic compounds removal by integrated treatment methods	2	
Le4	The basic stoichiometry of pollution transformation during biological treatment	2	
Le5	The kinetic characteristic of pollution transformation during biological treatment	2	
Le6	Reactors and process parameters of activated sludge	2	
Le7	Oxygen demand - system of aeration	2	
Le8	Systems of aerobic sewage treatment by activated sludge	2	
Le9	Mechanisms of biological removal of nitrogen	2	
Le10	Mechanisms of biological removal of phosphorous	2	
Le11	Systems for nitrogen removal by nitrification	2	
Le12	Systems for nitrogen removal by nitrification and denitrification	2	
Le13	Mechanisms of biological removal of nitrogen and phosphorous from sewage	2	
Le14	Systems for anaerobic-anoxic treatment by activated sludge	2	
Le15	Systems for anaerobic-anoxic and aerobic treatment by activated sludge	2	
Total ho	purs	30	

Form of	Form of classes - laboratory		
La1	Introduction, range of laboratory tests, health and safety regulation in chemical laboratory. Description of analytical methods	2	
La2	Chemical removal of phosphorous from sewage	4	
La3	Removal of biogens in activated sludge reactor	4	
La4	Sludge thickening	4	
La5	La5 Crediting		
Total hours		15	

TEACHING TOOLS USED			
N1	Informative lecture		
N2	Problem lecture		
N3	Results of measurement calculation		
N4	Report elaboration		
N1	Informative lecture		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02, PEU_W03	test
F1-F3	PEU_U01, PEU_U02, PEU_K01, PEU_K02	test
F4	PEU_U01, PEU_U02, PEU_K01, PEU_K02	Report
	P2 = 0.25F1 + 0.25F2 + 0.25F3 + 0.25F4	

PRIMARY AND SECONDARY LITERATURE

Pri	mary literature					
1	Lecture Notes					
2	Metcalf and Eddy Inc., Wastewater Engineering. Treatment and Reuse Environmental Science for Environmental Management, McGraw Hill (2003).					
3	M. Henze, P. Herremoes, J. la Cour Jansen, E. Arvin, Wastewater Treatment. Biological and Chemical Processes, Springer (2002).					
4	M. Henze, M. Żygadło, Oczyszczanie ścieków : procesy biologiczne i chemiczne, Wydawnictwo Politechniki Świętokrzyskiej, Kielce, 2002					
5	G.Tchobanoglous, Wastewater engineering: treatment and reuse, Boston. McGraw-Hill, 2004					
6	C.Leslie, Biological wastewater treatment, CRC Press/Taylor&Francis, London, 2011					
7	Laboratory instruction					
Sec	condary literature					
1	Metcalf & Eddy, Inc. (1991), Wastewater Engineering: Treatment, Disposal and Reuse, McGraw Hill, Inc.					
3	L. Hartman, Biologiczne oczyszczanie ścieków, Instalator Polski, Warszawa 1996.					
4	J. Łomotowski, A. Szpindor, Nowoczesne systemy oczyszczania ścieków, Arkady 1999.					
5 Praca zbiorowa, Poradnik eksploatatora oczyszczalni ścieków, PZiTS Poznań, 1997						
6 J. Bever, A. Stein, H. Teichman, Zaawansowane metody oczyszczania ścieków, Projprzem-EKO, Bydgoszcz 1997						

Name and surname:	Wojciech Adamski
E-mail:	wojciech.adamski@pwr.edu.pl

Solid waste management (n/d)

Faculty	Environmental Engineering
Name in Polish	Gospodarka odpadami
Name in English	Solid waste management
Main field of study	Environmental Quality Management
Level	II .
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		15		
Number of hours of total student workload (CNPS)	60		30		
Form of crediting	Examination with grade		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	2		1		
including number of ECTS points for practical(P) classes			1		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.3		0.8		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1	Has basic knowledge on waste management
2	Has basic knowledge of physics and chemistry needed to understand the phenomena of environmental engineering
2	Has basic knowledge and understanding of the processes of biological and physico - chemical processes in the
3	environment and assessing environmental hazards

SUBJECT OBJECTIVES

C1	Acquiring knowledge about the current environmental policy of the European Union in the field of waste	
CI	management , currently produced quantities and composition of the waste	
C2	Acquisition of knowledge in the field of modern waste management technology	
С3	Acquiring the ability to carry out basic indications and techniques for the analysis of waste	

Relating to knowledge:					
PEU_W01 Has basic knowledge of legislation on waste management of the EU and Poland					
PEU_W02 Has in-depth knowledge on the best available technology, waste treatment, conditions of propagation parameters and the final products					
PEU_W03	Is able to list the key issues related to waste management technologies, discuss their impact on the environment and the possibility of its limitations				
Relating to skil	Relating to skills:				
PEU_U01 Is able to plan and carry out basic experiments					
PEU_U02 Can interpret the results of chemical analyzes and develop them in the form of a report					

PEU_U03	PEU_U03 Can choose the optimal waste management technologies based on the obtained results				
PEU_U04	PEU_U04 Can make a report in writing and orally present research results				
Relating to social competences:					
PEU_K01	PEU_K01 Has the ability to work in a group and has the ability to present their work to the forum				
PEU_K02 Is aware of risks to the environment arising the consumption of goods and manufacturing					

Form of classes - lecture		Number
FOITH OF	classes - lecture	hours
Le1	Challenges of Modern Waste Management	2
Le2	Selected aspects of European Waste Policy	2
Le3	Integrated waste management, LCA and Industrial Symbiosis	2
Le4	Comparison of various separate waste collection systems	2
Le5	Sorting and dismantling	2
Le6	Best available technologies for biological waste treatment	2
Le7	Best available technologies for biological waste treatment	2
Le8	Emissions from biological waste treatment installations and abatment technologies; quality of	2
	products	
Le9	Selected technologies of mechanical-biological treatment	2
Le10	Fuel properties of waste and waste derived fuels	2
Le11	Selected technologies for thermal treatment of waste	2
Le12	Landfilling of waste	2
Le13	Limiting emisions from waste landfills	2
Le14	Closure, recultivation and revitalisation of waste landfills	2
Le15	Economic aspects of waste management	2
Total ho	urs	30

		Number	
Form of cl	Form of classes - laboratory		
		hours	
La1	Introduction, presentation of the scope of work, safety instructions	3	
La2	La2 Material composition analyses of waste/composts/stabilates, vegetation tests, acidity, water content		
La3	_a3 Standard analyses: loss of ignition, digestion of the samples		
La4	La4 Datermining total Nitrogen and total Phosphorus content, fertilising value		
La5	Determination of the heat of combustion - fuel properties; Calculation of results, comparison of	2	
Las	results	3	
Total hou	rs	15	

TEACHI	TEACHING TOOLS USED			
N1	N1 Informative lecture			
N2	N2 Problem-oriented lecture			
N3	Carrying out tests on waste and chemical determinations			
N4	N4 Discussion and interpretation of results			
N5	N5 Elaboration of lab report			

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02, PEU_W03	Examination
F1	PEU_U01, PEU_U02, PEU_U03	Preparation to classes
F2	PEU_U04, PEU_K01, PEU_K02	Report
	P2 = F1*0.3 + F2*0.7	

PRIMARY AND SECONDARY LITERATURE

Prir	Primary literature				
1	den Boer, E., den Boer, J. Szpadt, R. Solid waste management - podręcznik dla kierunku Environmental Quality Management, Environmental Engineering, Politechnika Wrocławska, Wrocław, 2011				
	Management, Environmental Engineering, Politechnika Wrocławska, Wrocław, 2011				
2	Waste Management / Bernd Bilitewski, Klaus Marek, Georg Härdtle ISBN: 9783540592105 - Verlag: Springer Berlin				
	den Boer, E., den Boer, J. Jager, J. Waste Management planing and optimisation. Handbook for Municipal Waste				
3	Prognosis and Sustainability Assessment, Ibidem Verlag, Stuttgart 2005 http://www.iwar.bauing.tu-				
	darmstadt.de/abft/Lcaiwm/Main.htm				
Sec	Secondary literature				
1	McDougall, White, P., Franke, M. i Hindle P. Integrated Solid Waste Management a Life Cycle Inventory, Blackwell				
	Science, 2001				

Name and surname:	Emilia den Boer
E-mail:	emilia.denboer@pwr.edu.pl

Environmental chemistry (n/d)

Faculty	Environmental Engineering
Name in Polish	Oczyszczanie gazów
Name in English	Waste gases purification
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	15			
Number of hours of total student workload (CNPS)	60	30			
Form of crediting	Examination with grade	Crediting with grade			
For group of courses mark (X) final course					
Number of ECTS points	2	1			
including number of ECTS points for practical(P) classes		1			
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.3	0.8			

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Basic knowledge in chemistry and mathematics

SUBJECT OBJECTIVES

C1	Understanding the theoretical and application fundamentals of technologies for cleaning the most important industrial waste gases	
C2	Learning basics of calculation methodology for inorganic waste gases purification by means of absorption	
C3	Learning basics of calculation methodology for organic waste gases purification by means of adsorption	

Relating to knowledge:				
PEU_W01	Ability to indicate the type of pollutants emitted into the atmosphere from industrial sources			
PEU_W02	_W02 Ability to pre-selection of technologies for protection of the atmospheric air			
Relating to skills	Relating to skills:			
PEU_U01 The ability to perform calculation for the process of waste gases purification by means of absorption determine the geometry of the absorber.				
PEU_U02 The ability to perform calculation for the process of waste gases purification by means of periodic adsorption and to determine the geometry of the adsorber				
Relating to socia	Relating to social competences:			
PEU_K01 Ability to select and assess way of action to achieve required goals				

Form of classes - lecture		Number of
1 01111 0	i classes - lecture	hours
Le1	Introduction - air quality as a global and/or local problems	2
Le2	Air pollutants formation during combustion processes	2
Le3	Air protection indicators	2
Le4	Theoretical fundamentals of industrial dust collection	2
Le5	Industrial dust collectors	2
Le6	Fly ash - formation, properties, utilization	2
Le7	Theory of gas pollutants removal from industrial flue gases	2
Le8	Sulfur dioxide control technologies	2
Le9	Wet lime/limestone technology for sulfur dioxide removal	2
Le10	Nitrogen oxides control technologies	2
Le11	Selective catalytic removal (SCR) technology for nitrogen oxides removal	2
Le12	Chelate technology for nitrogen oxides removal	2
Le13	Anthropogenic carbon dioxide emission and control problems	2
Le14	Odors problems	2
Le15	Summary and future trends	2
Total h	ours	30

Form c	of classes - classes	Number of hours
Cl1	Gas absorption in liquids; Equilibrium line and operation line; Mass balance	2
Cl2	Calculation of liquid demand for the co-current and counter-current absorption system; system with recirculation	2
Cl3	Determination of the active height for waste gases purification in scrubbers; geometry of the absorber	3
Cl4	Gas adsorption on the solid sorbent; Adsorption isotherm; Isotherm conversion between different operating conditions	3
CI5	Methods to calculate: time of periodic adsorption; geometry of the adsorber; thermal effect of the process	3
Cl6	Final test	2
Total h	ours	15

TEACHIN	TEACHING TOOLS USED		
N1	Problem lecture		
N2	N2 Tutorial		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02	Examination
P2	PEU_U01, PEU_U02, PEU_K01	Final test

PRIMARY AND SECONDARY LITERATURE

Prir	Primary literature		
1	J. Kuropka, Oczyszczanie gazów odlotowych z zanieczyszczeń gazowych, Obliczenia, tabele, materiały pomocnicze, OWPWr, Wrocław, 1996		
2	T. Hobler, Dyfuzyjny ruch masy i absorbery, WNT, Warszawa, 1962		
3	A.L. Kohl, R.B. Nielsen, Gas Purification, Elsevier, 1997		

Name and surname:	Andrzej Szczurek
E-mail:	andrzej.szczurek@pwr.edu.pl

Environmental toxicology (n/d)

Faculty	Environmental Engineering
Name in Polish	Toksykologia środowiskowa
Name in English	Environmental toxicology
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		15		
Number of hours of total student workload (CNPS)	30		30		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	1		1		
including number of ECTS points for practical(P) classes			1		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8		0.8		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 To have a basic knowledge in biology, microbiology, biochemistry

SUBJECT OBJECTIVES

C1	Knowledge of the basic principles and application of environmental toxicology
C2	Ability of performing toxicological analysis of environmental samples

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:				
PEU_W01	PEU_W01 Has a basic knowledge about environmental toxicology			
Relating to skills	Relating to skills:			
PEU_U01	PEU_U01 Is able to perform ecotoxicological examinations of water, soil, air and waste			
Relating to social competences:				
PEU_K01 Is conscious of threats to people and natural environment of chemical pollutions associated with emission.				

PROGRAMME CONTENT

Form o	f classes - lecture	Number of hours
Le1	Introduction and history of environmental toxicology.	2
Le2	Toxicity testing. Sources and types of toxins. Definition of toxins. Dose- response. Biological and physicochemical factors determining the toxicity.	2

Le3	Methods of soil and waste toxicity assessment.	2
Le4	Methods of air toxicity assessment.	2
Le5	Methods of water and sediments toxicity assessment.	2
Le6	Metals and their impact on the environment.	2
Le7	Ecotoxicology of selected compounds: polychlorinated organic compounds (polychlorinated biphenyls, dioxins, PAHs).	2
Le8	Final test	1
Total hours		30

		Number
Form of	classes - laboratory	of
		hours
La1	The introduction, the scope of exercises and principles of BHP in the toxicological laboratory. Preparing the biological material for toxicity screening. Assessment of the impact of biological, physicochemical factors to the toxicity of xenobiotics. The use of indicator organisms for examination of water and quality (invertebrates).	3
La2	The use of indicator organisms for examination of water quality (plants).	3
La3	The use of indicator organisms for examination of soil and waste quality.	3
La4	The use of indicator organisms for examination of soil and waste quality.	3
La5 Presentation of the results including the report from laboratories		3
Total hours		15

TEACHING	TEACHING TOOLS USED	
N1	N1 Informative lecture	
N2	N2 Presentation of conducting toxicological tests	
N3	N3 Preparation of report containing the summary of all examinations.	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01	Final test
F1	PEU_U01, PEU_K01	Credit
F2	PEU_U01, PEU_K01	Report
	P2=0.5F1+0.5F2	

PRIMARY AND SECONDARY LITERATURE

Prir	Primary literature		
1	Botana Luis M. Environmental toxicology. De Gruyter 2018		
2	Rybak J., Kołwzan B., Ecotoxicology: course in English: theory and laboratory practice. Łódź: PRINTPAP, 2011		
3	Ming Ho You Environmental Toxicology: Biological and Health Effects of Pollutants, Second Edition CRC Press; 2nd edition 2007		
Sec	ondary literature		
1	Wright DA, Welbourn P, Environmental Toxicology. Cambridge Environmental Chemistry, Cambridge University Press, 2002.		
2	D'Mello Felix JP. A Handbook of Environmental Toxicology: Human Disorders and Ecotoxicology, Cabi 2019.		

Name and surname:	Justyna Rybak
E-mail:	justyna.rybak@pwr.edu.pl

Environmental health hazards (n/d)

Faculty	Environmental Engineering
Name in Polish	Środowiskowe zagrożenia zdrowia
Name in English	Environmental health hazards
Main field of study	Environmental Quality Management
Level	II .
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30				
Number of hours of total student workload (CNPS)	60				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course					
Number of ECTS points	2				
including number of ECTS points for practical(P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.3				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1	Basic knowledge in general chemistry
2	Understanding of biology and physiology of human body

SUBJECT OBJECTIVES

C1	Understanding of influence of chemical, physical and biological environmental factors on human body.	
C	Extended knowledge of changes on cellular level and basic physiological functions of the human body caused by	
LZ	environmental factors.	
C3	Forecast of results and understanding the limited exposure of human body to hazardous environmental factors.	

Relating to knowledge:		
PEU_W01 Be knowledgeable about the sources of environmental contaminants and their impact to the human body		
PEU_W02	Be able to know and understand the changes in the human body caused by environmental factors, both natural and anthropogenic	
PEU_W03 Be aware to health hazards and the need to reduce risk exposure to environmental factors		

Form of	classes - lecture	Number
10111101	bidases rectare	hours
Le1	Human health- priority against the risk of environmental hazards. Introduction.	2
Le2	Water quality and its impact on human health. Modern approaches.	2
Le3	Pharmaceuticals in the Environment: Overview of sources, concerns, and solutions.	2
Le4	Impacts of indoor air pollution on human health.	2
Le5	Additives and contaminants of food.	2
Le6	Endocrine disruptors and theirs influence on reproduction	2
Le7	Climate change: distributive impacts.	2
Le8	Environmental determination of cancer	2
Le9	Minerals in environment and health.	2
Le10	Impacts of solid waste on human health	2
Le11	Ionizing and electromagnetic radiation health effects	2
Le12	Impacts of sunscreens on the environment.	2
Le13	Importance of children's health protection.	2
Le14	Reducing risk - environmental engineering perspective	2
Le15	Credits	2
Total hou	urs	30

TEACHING TOOLS USED		
N1	V1 Lecture	
N2	Multimedial presentation	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU W01, PEU W02, PEU W03	Written test

PRIMARY AND SECONDARY LITERATURE

Prir	Primary literature		
1	Herman Koren Michael S. Bisesi Handbook of environmental health CRC Press 2018		
2	Morton Lippmann (Ed.), Environmental toxicants: Human exposures and their health effects, John Wiley & Sons, New Jersey 2009		
3	Robert H. Friis, Essentials of Environmental Health, Jones & Bartlett Publishers 2012		
4	Luise Theodore & R. Ryan Dupont Environmental Health and Hazard Risk Assessment: Principles and Calculations CRC Press 2012		
Sec	Secondary literature		
1	Additional reading (scientific papers) recommended by lecturer		

Name and surname:	Justyna Rybak
E-mail:	justyna.rybak@pwr.edu.pl

Sewage systems (n/d)

Faculty	Environmental Engineering
Name in Polish	Sewage systems
Name in English	Systemy kanalizacyjne
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	obligatory
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15			15	
Number of hours of total student workload (CNPS)	60			30	
Form of crediting	Crediting with grade			Crediting with grade	
For group of courses mark (X) final course					
Number of ECTS points	2			1	
including number of ECTS points for practical(P) classes				1	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8			0.8	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Has a basic knowledge of hydraulics and hydrology.

SUBJECT OBJECTIVES

C1	Gaining knowledge in sewage systems design and modeling.
C2	Gaining knowledge concerning materials and techniques used for sewage systems construction.
С3	Acquiring skills of sewage systems computer models construction and practical application.

Relating to kn	Relating to knowledge:		
PEU_W01	Has knowledge of sewage systems design and modeling.		
PEU_W02	Has knowledge of materials and techniques used for sewage systems construction.		
Relating to sk	ills:		
PEU_U01	Is able to design a gravity wastewater collection system.		
PEU_U02	Is able to develop a hydrodynamic model of wastewater collection system.		
PEU_U03	Is able to simulate wastewater flows.		
Relating to so	Relating to social competences:		
PEU_K01	Is aware of the dangers to the environment resulting from improper sewage system de-sign and functioning.		

		Number
Form of	Form of classes - lecture	
		hours
Le1	Introduction to sewage systems lectures. Historical perspective of contemporary sewage systems.	1
Le2	Guidelines concerning materials and techniques used for sewage systems construction.	1
Le3	Wastewater collection systems hydrology. Dry and wet wastewater flows.	1
Le4	Surface runoff modelling in urban conditions.	2
Le5	Design methods of new gravity wastewater collection systems.	1
Le6	Steady gravity flows hydraulics.	1
Le7	Unsteady gravity flows hydraulics.	1
Le8	Hydrodynamic equations use for unsteady gravity flows modelling.	2
Le9	Constructing the sewage systems computer models.	1
1-10	Application of hydrodynamic sewage system model for probabilistic assessment of sewage system	1
Le10	functioning.	1
Le11	Wastewater detention facilities and their design.	1
Le12	Stormwater detention tanks design based on hydrodynamic simulations.	1
Le13	Pass writing.	1
Total ho	urs	30

Form of classes - project		Number of
		hours
Pr1	Design project release and discussion.	2
Pr2	New gravity wastewater collection system layout planning.	2
Pr3	Design storm identification, surface runoff calculations and sanitary flows estimation.	2
Pr4	Hydraulic calculations and system sizing.	2
Pr5	Developing of computer model for designed wastewater collection system.	2
Pr6	Hydraulic simulations of wastewater flows.	2
Pr7	Simulation results overview.	2
Total hours		15

TEACHING TOOLS USED	
N1	Informational lecture.
N2	Computer laboratory.
N3	Consultations.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02, PEU_K01	Pass writing.
P2	PEU_U01, PEU_U02, PEU_U03, PEU_K01	Consultations and verification of project correctness.

PRIMARY AND SECONDARY LITERATURE

٠.	TRIMARY AND SECONDARY EFFERNATIONS					
Pr	imary literature					
1	Haestad Methods, T.M. Walski, T.E. Barnard, E. Harold, L.B. Merritt, N. Walker, B.E. Whitman Wastewater Collection					
1	System Modeling and Design, Haestad Press, 2007					
2	Haestad Methods, S.R. Durrans, Stormwater Conveyance Modeling and Design, Haestad Press, 2003					
3	P. Lonsdale, D. Obradovic, Public Water Supply: Models, Data and Operational Management, CRC Press, 1998					
1	P. Bizier, Gravity Sanitary Sewer Design and Construction (ASCE Manuals and Reports on En-gineering Practice No. 60),					
4	2007					
Se	condary literature					
1	1 Kotowski A., Podstawy bezpiecznego wymiarowania odwodnień terenów. Sieci kanalizacyjne (Tom I). Obiekty specjalne					

	(Tom II). Wydawnictwo Seidel-Przywecki, Warszawa 2015.		
2	EN 752, Drain and sewer systems outside buildings, 1997		
T.G. Schmitt, ATV-DVWK Kommentar, ATV-A 118 Hydraulische Berechnung von Entwässe-rungssystemen, D			
3	2000		
_	Nowakowska M., Kotowski A.: Metodyka i zasady modelowania odwodnień terenów zurbanizowanych. Oficyna Wyd.		
4	Politechniki Wrocławskiej, Wrocław 2017.		

Name and surname:	Paweł Licznar
E-mail:	pawel.licznar@pwr.edu.pl

Diploma seminar (n/d)

Faculty	Environmental Engineering
Name in Polish	Seminarium dyplomowej
Name in English	Diploma seminar
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	optional
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)					30
Number of hours of total student workload (CNPS)					60
Form of crediting					Crediting with grade
For group of courses mark (X) final course					
Number of ECTS points					2
including number of ECTS points for practical(P) classes					2
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)					1,3

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 ECTS deficit not greater than it is due to the resolution of the Faculty Council

SUBJECT OBJECTIVES

C1		To posses the knowledge of presentation of personal qualifications in the scope of knowledge, skills and social competences in the field of technical sciences and in the range proper for the field of study Environmental Quality
		Management
	C2	To strengthen the ability of individual and group work

Relating to skil	Relating to skills:		
PEU_U01	Is able to present personal qualifications in the scope of knowledge, skills and so-cial competences in the range proper for the field of study Environmental Quality Management		
Relating to soc	Relating to social competences:		
PEU_K01 Is able to think and act creatively and enterprisingly; is able to work individually and in the group			

		Number
Form of	classes - lecture	of
		hours
Se1	Introduction	2
Se2	Presentation no1 - presentation of the subject, the scope of work, and used literature	2
Se3	Presentation no1 - presentation of the subject, the scope of work, and used literature	2
Se4	Presentation no1 - presentation of the subject, the scope of work, and used literature	2
Se5	Presentation no1 - presentation of the subject, the scope of work, and used literature	2
Se6	Presentation no2 -presentation of achievements to date	2
Se7	Presentation no2 - presentation of achievements to date	2
Se8	Presentation no2 - presentation of achievements to date	2
Se9	Presentation no2 - presentation of achievements to date	2
Se10	Presentation no3 - presentation of all effect of work done at course Diploma project	2
Se11	Presentation no3 - presentation of all effect of work done at course Diploma project	2
Se12	Presentation no3 - presentation of all effect of work done at course Diploma project	2
Se13	Presentation no3 - presentation of all effect of work done at course Diploma project	2
Se14	Presentation no3 - presentation of all effect of work done at course Diploma project	2
Se15	Crediting	2
Total ho	urs	30

TEACHING	TEACHING TOOLS USED		
N1	N1 Presentation of selected issues of diploma project		
N2	Multimedia presentation		
N3	Consultations		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_U01, PEU_K01	ability to discuss selected issues; participation in the discussio

PRIMARY AND SECONDARY LITERATURE

Primary literature	
-	
Secondary literaturę	
-	

Name and surname:	Wojciech Adamski
E-mail:	wojciech.adamski@pwr.edu.pl

Diploma project (Master thesis) (n/d)

Faculty	Environmental Engineering		
Name in Polish	Praca dyplomowa magisterska		
Name in English	Diploma project (Master thesis)		
Main field of study	Environmental Quality Management		
Level	II		
Form	full-time		
Kind of subject	optional		
Subject code			
Group of courses	NO		

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)				225	
Number of hours of total student workload (CNPS)				600	
Form of crediting				Crediting with grade	
For group of courses mark (X) final course					
Number of ECTS points				20	
including number of ECTS points for practical(P) classes				20	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)				8	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 ECTS deficit not greater than it is due to the resolution of the Faculty Council

SUBJECT OBJECTIVES

C1	Completion by a student a master diploma project on the basis of the general and detailed knowledge acquired during study, which is structured and underpinned by the theory within a range of science and technical areas relevant to main field of study Environmental Quality Management
C2	Writing by a student thesis (as work) on the basis of information literature, design work or research results
C3	Strengthening ability to work independently and in a team

Relating to skills:				
PEU_U01	PEU_U01 Is able to write and elaborate a technical text from the studied field of study Environmental Engineering and specialization Environmental Quality Management			
Relating to social competences:				
PEU_K01	Is able to work independently or in a group, taking different roles			

Form of classes - lecture		Number
		of
		hours
Pr1	Collection of the literature of the subject and becoming acquainted with the collected data	-
Pr2	Own work - analysis of the literature, performation of experiments	-
Pr3	Writing a thesis as works	-
Pr1 Collection of the literature of the subject and becoming acquainted with the collected data		-
Total hours		

TEACHING TOOLS USED		
N1	Own work - literature studies	
N2	Own work - performation of experiments	
N3	Writing technical text controlled by the promoter	
N4	Consultations	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement			
P1	PEU_U01, PEU_K01	Work in a semester, delivery of thesis as works			

PRIMARY AND SECONDARY LITERATURE

Primary literature	
Literature discussed with supervisor	
Secondary literature	
-	

Name and surname:	Wojciech Adamski
E-mail:	wojciech.adamski@pwr.edu.pl

Membrane separation processes in environmental protection środowiska (n/d)

Faculty	Environmental Engineering
Name in Polish	Membranowe procesy separacji w ochronie środowiska
Name in English	Membrane separation processes in environmental protection
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	optional
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		15		
Number of hours of total student workload (CNPS)	60		30		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	2		1		
including number of ECTS points for practical(P) classes			1		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8		0.8		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Knowledge in the scope of water chemistry as well as water and wastewater treatment

SUBJECT OBJECTIVES

C1	C1 To acquaint students with mechanisms of membrane transport		
C2	C2 To familiarize with examples of membrane hybrid and integrated systems in water and wastewater treatment		
C3	To pass ability to asses separation and transport phenomena and properties of membranes		

Relating to knowledge:					
PEU_W01	The role of membrane in interphase membrane transport				
PEU_W02	PEU_W02 Usefulness of hybrid and integrated membrane systems to treat water and wastewater				
PEU_W03	PEU_W03 Selection of methods to improve separation and transport features of membranes				
Relating to skills	Relating to skills:				
PEU_U01	O1 Assess membrane separation and transport properties				
PEU U02	Make use of research results to elaborate technologies of polluted streams cleaning or fractioning				
processes					
Relating to social competences:					
PEU_K01	PEU_K01 Ability to select and assess way of action to achieve required goals				

Form of classes - lecture		Number of hours
Le1	Classification of membrane processes. The role of membrane in interphase membrane transport	2
Le2	Membrane processes with the use of specific membranes	2
Le3	Removal of organic pollutants from aqueous solutions	2
Le4	Integrated and hybrid membrane systems in water treatment. Desalination installations with zero liquid discharge	2
Le5	Aerobic and anaerobic membrane bioreactors in wastewater treatment	2
Le6	Exploitation of membrane installations. Prevention methods of flux decline. Membrane cleaning techniques	2
Le7	Nutrients recovery from wastewater by membrane processes	2
Le8	Test	1
Total hours		

Form of classes - laboratory		Number
FOITH OF	FOITH OF Classes - laboratory	
La1	Introduction, presentation of experiments and principles dealing with chemical laboratory safety rules	2
La2	Determination of separation and transport features of ultrafiltration membranes	3
La3	Concentration of solutions and mixture components using pressure-driven membrane processes	3
La4 Water softening with the use of Donnan dialysis		3
La5	Desalination of water solutions by electrodialysis	3
La6 Completion		1
Total hours		15

TEACH	TEACHING TOOLS USED				
N1	N1 Information lecture				
N2	N2 Subject lecture				

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement	
P1	PEU_W01, PEU_W02, PEU_W03	test	
F1, F2	PEU_U01, PEU_U02, PEU_K01	test	
F3, F4	PEU_U01, PEU_U02, PEU_K01	test	
F5	PEU_U01, PEU_U02, PEU_K01	report	
	P2 = 0.2F1+0.2F2+0.2F3+0.2F4+0.2F5		

PRIMARY AND SECONDARY LITERATURE

Prir	Primary literature			
1	Kabsch-Korbutowicz M., Majewska-Nowak K., Membrane separation processes in environmental protection, Wrocław University of Technology (2011)			
2	Drioli E., Encyclopdia of membranes, Springer (2016)			
3	Baker R.W., Membrane technology and applications, Chichester, John Wiley & Sons (2004)			
4	Stephenson T., Membrane bioreactors for wastewater treatment, London, IWA Publishing (2001)			
5	Kołtuniewicz A., Membranes in clean technologies: theory and practice, Weinheim, Wiley-VCH (2008)			
6	Bodzek M., Konieczny K., Wykorzystanie procesów membranowych w uzdatnianiu wody, Projprzem-EKO, Bydgoszcz (2005)			
Bodzek M., Konieczny K., Usuwanie zanieczyszczeń nieorganicznych ze środowiska wodnego metodami membran Wyd. Seidel-Przywecki (2011)				

8	Scott K., Handbook of industrial membranes, Elsevier, Oxford (1995)		
	Sata I., Ion Exchange Membranes: Preparation, Characterization, Modification and Application, Royal Society of		
Chemistry, London (2004)			
Secondary literature			
1	Rautenbach R., Procesy membranowe, Wydawnictwo Naukowo -Techniczne, Warszawa (1996)		
2	Judd S., Jefferson B., Membranes for Industrial Wastewater Recovery and Re-use, Elsevier, Oxford (2003)		
3	Current literature, internet		

Name and surname:	Katarzyna Majewska-Nowak
E-mail:	katarzyna.majewska-nowak@pwr.edu.pl

Methods and techniques of air pollutants measurement (n/d)

Faculty	Environmental Engineering
Name in Polish	Metody i techniki pomiaru zanieczyszczeń powietrza
Name in English	Methods and techniques of air pollutants measurement
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	optional
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15				
Number of hours of total student workload (CNPS)	30				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course					
Number of ECTS points	1				
including number of ECTS points for practical(P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Basic knowledge in chemistry and physics

SUBJECT OBJECTIVES

C1	To present a selection of best methods and techniques of air sampling		
C2	To present a selection of best, latest methods and techniques of air pollutants analysis		

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:	
PEU_W01	Student has knowledge on a selection of best methods and techniques of air sampling
PEU_W02	Student has knowledge on a selection of best, latest methods and techniques of air pollutants analysis

PROGRAMME CONTENT

		Number
Form of	Form of classes - lecture	
		hours
Le1	Introduction	1
Le2	Principles of sampling procedures	2
Le3	Methods and instruments of particulate matter sampling	1
Le4	Methods and instruments of gaseous pollutants sampling	
Le5	Analysis of particulate matter	2
Le6	Air pollutants analysis - optical methods	2
Le7	Air pollutants analysis - electrochemical methods	2

Le8	Air pollutants analysis - other analytical methods	
Le9	Calibration methods	2
Le10	Assignment	1
Total hours		15

TEACHING TOOLS USED	
N1	Lecture
N2	Problem solving exercises.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02	Written assignment.

PRIMARY AND SECONDARY LITERATURE

Prir	Primary literature		
1	Andrzej Szczurek (2011) Methods and measuring techniques of air pollutants. WUT		
2	Paul M. Berthouex, Linfield C. Brown (2002) Statistics for Environmental Engineers, Lewis Publishers		
Sec	Secondary literature		
1	James P. Lodge, ed. (1988) Methods of Air Sampling and Analysis. Intersociety Committee		
2	Heikki Torvela (1994) Measurement of Atmospheric Emission, 1 edition. Springer.		

Name and surname:	Andrzej Szcurek
E-mail:	andrzej.szczurek@pwr.edu.pl

Modeling of water and sewage treatment processes (n/d)

Faculty	Environmental Engineering
Name in Polish	Modelowanie procesów oczyszczania wód i ścieków
Name in English	Modeling of water and sewage treatment processes
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	optional
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		15		
Number of hours of total student workload (CNPS)	30		30		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	1		1		
including number of ECTS points for practical(P) classes			1		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8		0.8		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1	Basic knowledge in mathematics and chemistry of water	
2	Basic knowledge in physical and chemical methods of water treatment	
3	Basic knowledge in processes of sewage treatment	

SUBJECT OBJECTIVES

C1	Acquainting with mechanics and rules of construction of mathematical models of unit pro-cesses for surface water,	
C1	groundwater and sewage treatment	
C2	Gaining skills for models application for water treatment systems designing and prediction of treatment efficiency	
С3	Gaining skills for computer simulation of sewage biological treatment	

Relating to knowledge:		
PEU_W01	Knowledge in the field of physical, chemical phenomena proceeding during water treatment	
PEU_W02	Knowledge in the field of mathematical modeling of unit processes for sewage treatment	
PEU_W03	Knowledge in the field of rules of mathematical models construction, and under-standing of theory of reactors	
Relating to skill	5:	
PEU_U01	PEU_U01 Ability of mathematical models of water treatment unit processes application for designing and efficiency of treatment prediction	
PEU_U02 Ability of computer simulator for analysis of activated sludge treatment process		
Relating to social competences:		

PEU_K01	Ability for creative operation
PEU_K02	Awareness of the importance of decisions making and their environmental impact

Form of classes - lecture		Number of
		hours
Le1	The role of mathematical models and computer simulation in engi-neering practice. Stoichiometry and process kinetics. Ideal reactor models	2
Le2	Modeling of some physical unit processes for water treatment (flocculation, sedimentation - static, kinetics and dynamic models)	2
Le3	Modeling of some physical unit processes for water treatment (filtration, adsorption - static, kinetics and dynamic models)	2
Le4	Modeling of some chemical processes for water treatment (oxidation, chemical disinfection)	2
Le5	Hydraulic retention time, sludge age	2
Le6	Substitute model of mixture of organic compounds COD division into fraction. Model of hydrolysis of slowly decomposed organic compounds	2
Le7	Model of aerobic decomposition of organic contamination Model of activated sludge	2
Le8	Test	1
Total hou	rs	15

Form of	f classes - laboratory	Number of hours
La1	Sequence of unit processes of water treatment. Determination of sedimentation velocity for grain particles. Determination of real operation time for filter bed	3
La2	Adsorption in flow system - determination of GAC bed run time and adsorption capacity	3
La3	Computer programme application for membrane installation designing - simulation of various desalination systems with the use of reverse osmosis	3
La4	Familiarize with computer programme SymOS. Influence of sludge age on efficiency of sewage treatment by activated sludge	3
La5	Dynamics of oxygen demand in sewage treatment by activated sludge. Influence of process parameters on efficiency of treatment in MLE system	3
Total ho	ours	15

TEACHING TOOLS USED	
N1	Inquire lecture
N2	Problem lecture
N3	Computer simulation
N4	Problem classes
N5	Report working out

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02, PEU_W03, PEU_K02	Test
F1, F2	PEU_U01, PEU_U02, PEU_K01	Report
F3, F4	PEU_U01, PEU_U02, PEU_K01	Report
F5, F6	PEU_U01, PEU_U02, PEU_K01	Report
	P2 = 0.1F1 + 0.2F2 + 0.1F3 + 0.2F4 + 0.2F5 + 0.2F6	

PRIMARY AND SECONDARY LITERATURE

Primary literature			
1	W. Adamski, Modelowanie systemów oczyszczania wód, PWN (2002)		
2	Wastewater Treatment Process Modeling, Second Edition, Water Environment Federation, McGraw Hill Professional		

	(2014)			
3	E. Worch, Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modelling, Walter de Gruyter (2012)			
4	Mohammed Abdalla Hussein, Wael Mahmoud Kamel, Yaser Hagag Mohamed, Modern Techniques in Water Research and Technology: Design an Innovative Model for Water Treatment, LAP LAMBERT Academic Publishing (November 12, 2012)			
5	W.J. Masschelein, Unit Processes in Drinking Water Treatment, Marcel Dekker Inc. (1992)			
6	S. Judd, B. Jefferson, Membranes for industrial wastewater recovery and re-use, Elsevier, Oxford (2003)			
7	A.L. Kowal, M. Świderska-Bróż, Oczyszczanie wody, PWN, Warszawa 2009.			
8	M. Bodzek, K.Konieczny, Wykorzystanie procesów membranowych w uzdatnianiu wody, Projprzem-EKO, Bydgoszcz 2005			
Secon	dary literature			
1	E. Brauns, Calculation of cross-flow reverse osmosis at your desk, Desalination and Water Reuse 10(4), pp. 18-25 (2001)			
2	E. Brauns, W. Doyen, C. Dotremont, E. Van Hoof, I. Genne, A pragmatic cost calculation and design software tool for pressure driven membrane filtration systems, Desalination and Water Reuse 12(1), pp. 40-44 (2002)			
3	M. Cheryan, Ultrafiltration and Microfiltration Handbook, Technomic Publishing Company Inc. Basel 1998			
4	Hydranautics RO System Design, Hydranautics, www.hydranautics.com			

Name and surname:	Wojciech Adamski
E-mail: wojciech.adamski@pwr.edu.pl	

Biomonitoring (n/d)

Faculty	Environmental Engineering	
Name in Polish	Monitoring biologiczny	
Name in English	Biomonitoring	
Main field of study	Environmental Quality Management	
Level	II .	
Form	full-time	
Kind of subject	optional	
Subject code		
Group of courses	NO	

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15				
Number of hours of total student workload (CNPS)	30				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course					
Number of ECTS points	1				
including number of ECTS points for practical(P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 To have a basic knowledge in biology

SUBJECT OBJECTIVES

C1	1 Knowledge of factors which determinate the presence of aquatic and terrestrial organisms		
C2	C2 Acquisition of knowledge about biological processes and threats appearing in the natural environment		
С3	C3 Knowledge of biological techniques of monitoring the environment		

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:			
DELL MO1	Has a knowledge about conditions influencing the presence of aquatic and terrestrial organisms, diversity of		
the flora and fauna and techniques universally used in the environmental monitoring			
Relating to social competences:			
DELL KO1	Possess skills to work in the group and to play different roles (leader, contractor, commentator) and		
PEU_K01	understands main threats for ecosystems and knows how to prevent them		

PROGRAMME CONTENT

Form of classes - lecture		Number of hours
Le1	Significance of biological monitoring for environmental protection. Features of taxonomic categories perForming functions for bioindication. Aquatic environment. Rivers as the place of life. Assemblages of organisms of flowing waters. Lakes and ponds as the place of life. Assemblages of organisms in	2

	lakes. The use of invertebrates for water environmental monitoring. Review of monitoring methods with the use of invertebrates.	
Le2	Applying algae and plants (macrophytes) in the monitoring of the aquatic environment. Review of monitoring methods with the use of these taxa Applying vertebrates (fish) in the monitoring of the aquatic environment. Review of monitoring methods with the use of these taxa.	2
Le3	Amphibians - organisms living on the border of two environments - as bioindicators. The application of amphibians in the biomonitoring	2
Le4	Air. Species of plants and animals used in the monitoring of air.	2
Le5	Land environment: explaining the term: biodiversity and its meaning in the biomonitoring. Methods of measurement of biodiversity (biodiversity indicators species, substitute diversity estimation, method of many taxa). Common and rare species. Estimation and the categorization of species. The genetic diversity versus the diversity of biocenosis.	2
Le6	Organisms used in biodiversity evaluation and the land environmental monitoring. Selected birds and mammals. Monitoring of ecosystems: forests, agroceonoses and cities.	2
Le7	Application of biomonitoring in the reintroduction of species and the restitution of endangered sites. Monitoring of protected and valuable areas. Endangered ecosystems in the world and in Poland and methods of monitoring them. Systems of monitoring in the world and in Poland.	2
Le8	Final test	1
Total h	nours	15

TEACHING TOOLS USED		
N1	Informative lecture	
N2	Problem lecture	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement	
P1	PEU_W01, PEU_K01	Final test	

PRIMARY AND SECONDARY LITERATURE

Pri	mary literature		
1	Zimny H.: 2006 Ekologiczna ocena stanu środowiska: bioindykacja i biomonitoring		
2	Market B.A, Breure A.M., Zechmeister H. G: 2004 Bioindicators and Biomonitors, Volume 6 Oxford University Press		
3	Allan J.D.: 1998 Ekologia wód płynących, PWN.		
4	Kudelska D., Soszka H.: 1996 Przegląd stosowanych w różnych krajach sposobów oceny i klasyfikacji wód		
4	powierzchniowych, Biblioteka Monitoringu Środowiska PIOŚ.		
5	Mason C.F.,: 1987 Biology of freshwater pollution, Longman.		
6	Andrzejewski R., Weigle A. (red) 2003: Różnorodność biologiczna Polski. Warszawa. Narodowa Fundacja Ochrony		
0	Środowiska.		
	Bis B., Mikulec A.: Typy biocenotyczne rzek Polski: wyznaczenie granic klas za pomocą Polskiego Wielometrycznego		
7	Wskaźnika Stanu Ekologicznego Rzek MMI_PL, na podstawie makrobezkręgowców bentosowych (moduł oceny: RIVECO		
'	macro). W: Przewodnik do oceny stanu ekologicznego rzek na podstawie makrobezkręgowców bentosowych. Barbara Bis		
	(red.). Warszawa: Narodowa Fundacja Ochrony Środowiska, Główny Inspektorat Ochrony Środowiska, 2012, s. 82-93.		
Sec	Secondary literature		
1	Chandler J.R.: 1970 A biological approach to water quality management, Water Pollution Control, 69, 415-421		
2	EPA, 1998, Rapid Bioassessment Protocols for Use in Streams and Wadable Rivers: Periphyton, Benthic		
	Macroinvertebrates, and Fish, Second Edition, FPA Raports, 7-1, 7-20.		

Name and surname:	Justyna Rybak
E-mail:	justyna.rybak@pwr.edu.pl

Air pollutants and their sources (n/d)

Faculty	Environmental Engineering
Name in Polish	Zanieczyszczenia powietrza i ich źródła
Name in English	Air pollutants and their sources
Main field of study	Environmental Quality Management
Level	II
Form	full-time
Kind of subject	optional
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		15		
Number of hours of total student workload (CNPS)	30		30		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	1		1		
including number of ECTS points for practical(P) classes			1		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.8		0.8		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1	Basic knowledge in chemistry and physics
2	Computer skills (e.g. MS Excel)

SUBJECT OBJECTIVES

C1	To transmit the knowledge on air pollutants and their sources
C2	To bequeath the knowledge concerning air pollution impact on environment and human health
С3	To present methods of air pollution sources impact analysis for outdoor air
C4	To present methods of air pollution sources impact analysis for indoor air

Relating to kno	Relating to knowledge:		
PEU_W01 Student has knowledge on air pollutants and their sources			
PEU_W02 Student has knowledge on air pollution impact on environment and human health			
Relating to skill	Relating to skills:		
PEU_U01	Student is familiar with methods of air pollution sources impact analysis for outdoor air		
PEU_U02 Student is familiar with methods of air pollution sources impact analysis for indoor air			

		Number
Form of	Form of classes - lecture	
		hours
Le1	Atmosphere, its chemical and physical properties; structure; composition of unpolluted atmosphere	2
Le2	Sulphur oxides - properties, sources, environmental effects and abatement techniques	2
Le3	Nitrogen oxides - properties, sources, environmental effects and abatement techniques	2
Le4	Oxidants - ozone, radicals - properties, sources, environmental effects and abatement techniques	2
Le5	Carbon monoxide and carbon dioxide - properties, sources, environmental effects and abatement	2
LEJ	techniques	
Le6	Methane and VOCs - properties, sources, environmental effects and abatement techniques	2
Le7	Particulate matter - properties, sources, environmental effects and abatement techniques	2
Le8	Assignment	1
Total ho	purs	15

		Number	
Form of	Form of classes - laboratory		
		hours	
La1	Source of air pollution and its impact.	2	
La2	Introduction to dedicated software.	2	
La3	Mathematical description of outdoor air pollution sources.	2	
La4	Simulation of pollution sources impact on outdoor air; point source.	2	
La5	Mathematical description of indoor air pollution sources.	2	
La6	Simulation of pollution sources impact on indoor air; constant emission source.	2	
La7	Simulation of pollution sources impact on indoor air; instantaneous emission source.	2	
La8 Assignment		1	
Total hours		15	

TEACHING TOOLS USED		
N1	Lecture	
N2	Problem solving exercises	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	PEU_W01, PEU_W02	Written assignment
P2	PEU_U01, PEU_U02	Individual analysis of a selected problem

PRIMARY AND SECONDARY LITERATURE

Prin	Primary literature		
1	A. C. Stern, R. W. Bonbel, D. B. Turner, and D. L. Fox. (1984) Fundamentals of air pollution, (2nd Edition). Academic Press		
2	Vallero, Daniel (2008). Fundamentals of Air Pollution (4th Edition). Elsevier.		
Sec	Secondary literature		
1	Cheremisinoff, Nicholas P. (2002). Handbook of Air Pollution and Control. Elsevier		
2	Hester, R.E. Harrison, R.M. (1998). Air Pollution and Health. Royal Society of Chemistry.		
3	Seinfeld, John H. Pandis, Spyros N. (2006). Atmospheric Chemistry and Physics - From Air Pollution to Climate Change		
3	(2nd Edition). John Wiley & Sons.		
4	Pepper, Darrell W. Carrington, David (2009). Modeling Indoor Air Pollution. World Scientific.		

Name and surname:	Andrzej Szczurek
E-mail: andrzej.szczurek@pwr.edu.pl	

Automatyka w inżynierii środowiska (n/d)

Faculty	Environmental Engineering
Name in Polish	Automatyka w inżynierii środowiska
Name in English	Automation in environmental engineering
Main field of study	Environmental Quality Management
Level	II.
Form	full-time
Kind of subject	optional
Subject code	
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)			15		
Number of hours of total student workload (CNPS)			60		
Form of crediting			Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points			2		
including number of ECTS points for practical(P) classes			2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)			0.8		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

Has a fundamental knowledge of automation and characteristics of system elements for automatic regulation applied in environmental engineering

SUBJECT OBJECTIVES

	C1	The acquisition of skills in information and communication technologies to the development of appropriate control
	CI	algorithms and programming of programmable controllers for typical applications in environmental engineering
	C2	Learn how to evaluate the suitability and usability of devices and computer systems for monitoring and controlling
LZ	processes in environmental engineering	

Relating to knowledge:		
Relating to skills:		
Able to use information and communication technologies to the development of appropriate control algorithms and programming of programmable controllers for typical applications in environmental engineering		
PEU_U02 Able to assess the suitability and applicability of computer equipment and systems for		
Relating to social competences:		

Form of	f classes - laboratory	Number of hours
La1	Introduction, overview of the scope of laboratory practice and rules of implementation. Overview of safety rules in the computer laboratory. Introduction to the engineering tool.	2
La2	Programming of a field equipment controller for the technological system, according to the previously developed algorithm. The development of control algorithms for simple technological system, in the field of environmental engineering.	2
La3	Individual work on the automation of technological systems in the field of environmental engineering. Development of technological schemes, describing the functions of regulation and control, and programming the controller.	2
La4	Individual work on the automation of technological systems in the field of environmental engineering. Development of technological schemes, describing the functions of regulation and control, and programming the controller.	2
La5	Individual work on the automation of technological systems in the field of environmental engineering. Development of technological schemes, describing the functions of regulation and control, and programming the controller.	2
La6	Individual work on the automation of technological systems in the field of environmental engineering. Development of technological schemes, describing the functions of regulation and control, and programming the controller.	2
La7	Individual work on the automation of technological systems in the field of environmental engineering. Development of technological schemes, describing the functions of regulation and control, and programming the controller.	2
La8	Presentation and review of results for each particular team	1
Total h	ours	15

TEACHING TOOLS USED		
N1	Preparing control algorithms	
N2	Programming of field equipment controllers	
N3	Multimedia presentation	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
Р	PEU_U01, PEU_U02	100% of attendance; Multimedia presentation of the work outcome
	P2 = 0.2F1+0.2F2+0.2F3+0.2F4+0.2F5	

PRIMARY AND SECONDARY LITERATURE

Primary literature		
1	Lewermore G.J.: Building Energy Management Systems. New York, London 2000	
2	Dorf R.C., Bishop R.H.: Modern Control Systems (12th ed.), Prentice Hall,	
3	Automation of Wastewater Treatment Facilities - MOP 21 (Wef Manual of Practice), McGraw-Hill Professional, 2006	
4	Raven F. H.: Automatic Control Engineering, McGraw-Hill, New York, 1961.	
5	Regelungs- und Steuerungstechnik in der Versorgungstechnik. C.F. Muller. 2002	
Secondary literature		
1	Love J.: Process Automation Handbook: A Guide to Theory and Practice, Springer, 2007	

Name and surname:	Marta Laska
E-mail:	marta.laska@pwr.edu.pl